
Abstract
The evaluation of incremental progress towards ‘Strong AI’ 
or ‘AGI’ remains a challenging open problem. In this paper, 
we draw inspiration from benchmarks used in artificial com-
monsense reasoning to propose a new benchmark problem—
the Toy Box Problem—that tests the practical real-world 
intelligence and learning capabilities of an agent. An impor-
tant aspect of a benchmark is that it is realistic and plausibly 
achievable; as such, we outline a preliminary solution based 
on the Comirit Framework.

Introduction
The objective of commonsense reasoning is to give soft-
ware and robotic systems the broad every-day knowledge 
and know-how that comes effortlessly to human beings 
and that is essential for survival in our complex environ-
ment. While commonsense is, or at least appears to be, a 
narrower problem than ‘Strong AI’ or ‘AGI’, it shares many 
of the same representational, computational and philosophi-
cal challenges. Indeed, one might view commonsense as the 
practical, immediate and situated subset of general purpose 
intelligence.
 Thus, commonsense reasoning serves as a useful step-
ping-stone towards both the theory and practice of Strong 
AI. Not only does commonsense provide a broad, deep and 
accessible domain for developing theoretical conceptions of 
real-world reasoning, but the practical experience of devel-
oping large scale commonsense provides useful insights into 
the scalability challenges of general-purpose intelligence.
 In much the same way that evaluation challenges AGI re-
searchers today2, work in commonsense reasoning has long 
been challenged by the difficulty of finding manageable, but 
open-ended benchmarks.
 The difficulty of evaluation facing both commonsense 
reasoning and AGI arises from the fact that the problems are 
so great that we cannot today simply implement complete 
systems and test them in their intended domains; it is neces-
sary to measure incremental progress. Unfortunately, incre-
mental progress can be difficult to judge: it is relatively easy 
to demonstrate that a particular formalism supports or lacks 
a given feature, but it is much harder to determine whether 
that feature represents a meaningful improvement. For ex-
ample, even though a formalism or system appears to offer 

1 This research supported in part by an ARC Discovery Grant 
while at the University of Technology, Sydney.
2 Consider, for example, the ‘Developing an AGI IQ Test’ 
workshop that is affiliated with the AGI 2010 conference.
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improvements in expressive power, efficiency and ease-of-
use, it may have sacrificed a ‘show-stopping’ crucial feature 
that is overlooked in the evaluation.
 In the commonsense reasoning community, this problem 
is addressed by defining non-trivial (but plausibly achiev-
able) reasoning problems, and then analyzing the ability of 
a formalism to solve the problem and a number of elabora-
tions. While analysis is conducted with respect to the sys-
tem’s performance (rather than ‘features’), the formalism 
itself is also considered in what might be termed a ‘grey box 
analysis’ (rather than, say, a black-box comparison such as 
used at RoboCup). To these ends, Morgenstern and Miller 
(2009) have collected a set of non-trivial commonsense rea-
soning problems and a handful of proposed ‘solutions’.
 With any benchmark or challenge problem there is, of 
course, the temptation to fine-tune a system to the problem, 
rather than attempting to design more general and abstract 
capabilities. As such, the benchmarks used in the common-
sense reasoning community are not formally defined, nor 
are they strictly measurable. Instead, they offer a shared and 
open-ended scenario to guide qualitative analysis of prog-
ress towards our goals. Even though this approach is less ob-
jective than a competition or a formal goal, these challenge 
problems provide a meaningful context for evaluation that 
helps temper unfounded wild claims, while at the same time 
avoiding specifics that are readily gamed.
 To date, we have been developing a general purpose 
commonsense-reasoning framework named Comirit, and 
have evaluated the system on two benchmark problems: the 
Egg Cracking Problem (Johnston and Williams 2007), and 
the Eating on an Aircraft Problem (Johnston 2009). We have 
found this methodology useful, but in charting a course to 
more general intelligence, we found that the current selec-
tion of proposed benchmark problems offer little scope for 
evaluating the ability of an agent to learn on its own and thus 
demonstrate AGI-like capabilities.
 Our objective in this paper is therefore to present an open-
ended benchmark, the Toy Box Problem, in the style of Mor-
genstern and Miller (2009), which may be used to evaluate 
progress towards commonsense reasoning and general intel-
ligence.
 In order to briefly illustrate the feasibility of the bench-
mark problem and the problem may be applied, we then use 
the Toy Box Problem on the Comirit framework. In doing 
so, we will introduce new capabilities in the framework, and 
show how the framework may be used to partially solve the 
Toy Box Problem.



The Toy Box Problem
As with existing benchmarks used within the commonsense 
reasoning community (Morgenstern and Miller 2009), we pose 
the Toy Box Problem problem as a hypothetical scenario:

A robot is given a box of previously unseen toys. The 
toys vary in shape, appearance and construction materi-
als. Some toys may be entirely unique, some toys may be 
identical, and yet other toys may share certain character-
istics (such as shape or construction materials). The robot 
has an opportunity to first play and experiment with the 
toys, but is subsequently tested on its knowledge of the 
toys. It must predict the responses of new interactions 
with toys, and the likely behavior of previously unseen 
toys made from similar materials or of similar shape or 
appearance. Furthermore, should the toy box be emptied 
onto the floor, it must also be able to generate an appro-
priate sequence of actions to return the toys to the box 
without causing damage to any toys (or itself).

The problem is intentionally phrased as a somewhat con-
strained (but non-trivial) scenario with open-ended possibili-
ties for increasing (or decreasing) its complexity. In particular, 
we allow the problem to be instantiated in combinations of 
four steps of increasing situation complexity and four steps of 
toy complexity.
 That is, the problem may be considered in terms of one of 
the following environments:

E1. A virtual robot interacting within a virtual 2-dimen-
sional world

E2. A real robot interacting within a real-world planar 
environment (e.g., a table surface with ‘flat’ toys and 
in which no relevant behavior occurs above the table 
surface)

E3. A virtual robot interacting within a virtual 3-dimen-
sional world

E4. A real robot interacting within the real world, without 
constraints

Similarly, the complexity of toys is themselves also chosen 
from the following:

T1. Toys with observable simple structure, formed from 
rigid solids, soft solids, liquids and gases

T2. Toys with complex, but observable mechanical struc-
ture (again, created from rigid solids, soft solids, liq-
uids and gases)

T3. Toys with complex, but observable mechanical struc-
ture, created from any material (including magnets, 
gases and reactive chemicals)

T4. Toys with arbitrary structure and operation (including 
electronic devices)

In each case, the world and the toys contained within, may 
only be observed via ‘raster’ cameras. That is, even in virtual 
worlds (E1 and E3), the robot is unable to directly sense the 
type or the underlying model of a virtual toy (i.e., the problem 
cannot be tested in a world such as Second Life, in which 
agents can directly ‘sense’ the symbolic name, type and prop-
erties of an object).
 In fact, virtual worlds (of E1 and E3) should be as close 
as possible to a physical world (including the ability for ob-
jects to be arbitrarily broken and joined). Virtual worlds are 
included in the Toy Box Problem not to reduce the conceptual 

challenge of the problem, but primarily to separate the effort 
involved in dealing with camera noise, camera/hardware fail-
ures, color blurring and other sensory uncertainty.
 The Toy Box Problem may be used for evaluating an ‘intel-
ligent’ system by selecting a combination of environment and 
toy challenges. For example, the pairing E1&T1 represents 
the easiest challenge, whereas E4&T4 present the greatest dif-
ficulty. Note, however that the pairs do not need to match: 
the next development step for a system which solves E1&T1 
might be either E1&T2 or E2&T1.
 The Toy Box Problem is specifically designed as a stepping 
stone towards general intelligence. As such, a solution to the 
simplest instances of this problem should not require univer-
sal or human-like intelligence. While an agent must have an 
ability to learn or identify by observation (because the toys 
are new to the agent), it does not necessarily require the abil-
ity to ‘learn to learn’. For example, given a comprehensive 
innate knowledge-base of naïve physics, it may be sufficient 
for an agent to solve the problem with toys in T1 and T2 by 
a process of identification rather than true learning. However, 
the difficulty of the challenge increases with more complex 
toys of T3 and T4, and it is unlikely that a system would con-
tinue to succeed on these challenges without deeper learning 
capabilities (though, it would be a very interesting outcome 
with deep implications for AGI research if a system without 
learning capabilities does continue to succeed even on the 
most challenging instances of the problem).
 While the pairing E1&T1 is the easiest challenge of the Toy 
Box Problem, we believe that any solution to E1&T1 would 
be a non-trivial accomplishment, far beyond the reach of 
standard ‘Narrow AI’ techniques in use today. Nevertheless, 
we expect that the pair E1&T1 should lie within reasonable 
expectations of the capabilities of proposals for ‘Strong AI’ 
architectures today. One could readily conceive of systems 
based on methods as diverse as logic, connectionist networks 
or genetic programming to each be adapted to solving E1&T1 
within a short-term project, and thus form the basis of mean-
ingful comparison and analysis between disparate methods.
 More difficult combinations, such as the pair E4&T4, are 
currently far beyond all current technologies. While a system 
that performs well for such pairings may not have true general 
intelligence, it would be at the pinnacle of practical real-world 
physical competence and would have serious real world ap-
plications. For example, this level of knowledge would en-
able a domestic robot or a rescue robot to deal with the many 
unexpected objects and situations it would encounter during 
its routine duties: whether cleaning a house or making way 
through urban rubble.
 Finally, it is worthwhile noting a connection here with 
recent discussions concerning the creation of virtual ‘pre-
schools’ for human-like AI development (Goertzel and Bugaj 
2009). The Toy Box Problem may be viewed as a specific 
and achievable ‘target’ for developing and evaluating real 
systems, rather than simply aiming to provide an enriching 
environment for robot ‘education’.
 In this rest of this paper, we further illustrate the problem 
by outlining a preliminary solution to the Toy Box Problem, 
and considering (in the first instance) how it may be ‘solved’ 
for the pair E1&T1. 



Comirit Framework
Over the past four years, we have been developing Comirit; a 
hybrid reasoning framework for commonsense reasoning. At 
the core of the framework lies a generic graph-based scheme 
for constructing simulations that implicitly capture practi-
cal commonsense knowledge. While the framework is not 
intended to be biologically plausible, simulation in Comirit 
may be viewed as a computational analog to human visual 
imagination. Comirit uses simulations to reason about, predict 
and speculate about a given situation, by first instantiating a 
simulation of that situation and then using the simulation as 
a mental playground for experimenting with possible actions 
and anticipating reactions.
 However, while simulation is a powerful, computationally 
efficient, and easy-to-engineer scheme for representing com-
monsense knowledge and predicting the outcome of a situa-
tion, the method is constrained to concrete reasoning and to 
the ‘arrow-of-time’. That is, simulation by itself is not well 
suited to the following kinds of reasoning:

1. Explaining the cause of an outcome (‘Why is there 
split milk on the floor?’)

2. Fact-based reasoning (‘What is the capital of Rus-
sia?’)

3. Abstract deduction (‘What is 3 plus 7?’)
4. Learning about and predicting in novel domains (‘How 

will this new toy behave?’)
We have therefore developed Comirit as an open-ended 
multi-representational framework that combines simulation 
with logical deduction, machine learning and action selection. 
This integration is achieved by a uniform mechanism that is 
based on the automated theorem proving method of analytic 
tableaux (see e.g., Hähnle 2001). In Comirit, the tableau al-
gorithm is extended so that it searches and ranks spaces of 
possible worlds, enabling the disparate mechanisms to be uni-
formly represented and reasoned in a unified tableau.
 In the remainder of this section, we provide an overview 
of simulation, hybrid reasoning and learning in Comirit and 
show how it relates to the Toy Box Problem. More detailed 
explanations of Comirit may be found in our prior publica-
tions (Johnston and Williams 2007; 2008; 2009).

Simulation
In the Comirit framework, simulations are the primary repre-
sentation of commonsense knowledge. Comirit Simulations 
are designed as a generalization and formalization of an early 
proposal by Gardin and Meltzer (1989). In particular, Comirit 

uses a generic graph-based representation that has been ex-
tended to use accurate 3D physics3.
 Complex objects are modeled by approximating the struc-
ture of the object as an annotated graphical structure, and then 
iteratively updating the annotations according to the laws of 
physics. That is, if we have an object to simulate—an egg, 
for example—then a graph is instantiated comprising of ver-
tices that denote interconnected ‘masses’, ‘springs’, ‘torsion 
springs’ and  ‘convex hulls’ which approximate the structure 
of an egg. Each such vertex is annotated with attributes to 
drive appropriate behavior; for example, each ‘mass’ vertex 
has a spatial position (x, y, z coordinates) and a local mass 
density (among other attributes). Newton’s laws of motion are 
then iteratively applied to the graph structure. For example, 
the effects of springs, liquids and hulls are modeled using 
Hooke’s law. Figure 1 illustrates some of the parts of a simu-
lation for the Egg Cracking Problem. Figure 2 also depicts 
the result of running such a simulation to observe the effects 
of dropping an egg into a bowl: the egg has cracked, and its 
liquid contents have spilled out.
 Comirit uses 3D simulations and so is potentially applica-
ble to E3 and E4 in the Toy Box Problem, however the same 
framework may be trivially adapted to the 2D environments 
of E1 and E2. The translation of 3D physics into 2D physics 
is straightforward: one axis is either fixed to be constant, or is 
entirely removed from the equations of motion.
 A system may perform powerful reasoning about any ob-
ject for which it has a simulation. For example, it may con-
sider safe ways of handling eggs and toys by instantiating a 
simulation in internal memory and then testing actions against 
that ‘imagined’ instance. If the agent uses visualization to de-
termine that an heavy force will cause an egg to crack, it can 
avoid causing damage to the egg in real life.

Simulation + Reasoning
Recalling that simulation only supports a ‘forward chaining’ 
inference mode, we have integrated simulation with logical 
deduction in a hybrid architecture in order to combine the 
strengths and complement the weaknesses of each mecha-
nism. That is, we use the deductive power of a general-pur-
pose logic to make up for the inflexibility of simulation.
 In combining simulation and logic, our experiences are that 

3 Comirit may also support non-physical domains, such as 
financial markets or organizational behavior but they are be-
yond the scope of this paper.
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Figure 1: Parts of a simulation of an egg



the conceptual mismatch between the mechanisms of simula-
tion and logic prevents the application of traditional integra-
tion techniques such as blackboard architectures. Our attempts 
to use mainstream integration architectures invariably result-
ed in systems that were unworkably complex and difficult to 
maintain. Instead, we sought a clear and unifying abstraction 
to harmonize the semantics of the reasoning mechanisms; by 
interpreting both simulation and logical deduction as opera-
tions that manipulate spaces of possible worlds.
 The method of analytic tableaux (see e.g., Hähnle 2001) is 
an efficient method of automatic theorem proving. Analytic 
tableaux have been successfully applied to large problems on 
the semantic web, and there is a vast body of literature on 
their efficient implementation (ibid.). The method involves 
the automatic construction of search trees (tableaux) through 
the syntactic decomposition of logical expressions, and then 
eliminates branches of the tree that contain contradictions 
among decomposed atomic formulae. Each branch of the re-
sultant tableau may be seen as a partial, disjunction-free de-
scription of a model for the input formulae.
 Logical deduction and simulation can be unified through 
tableau reasoning. The tableau algorithm is designed for logi-
cal deduction, and its algorithm is effectively a search through 
symbolically-defined spaces of worlds. Simulation is a pro-
cess that can be used to expand upon symbolic knowledge in 
a given world (i.e., by forward chaining to future states based 
on description of the current state), and so simulation can be 
applied to generate information in the branches of a tableau.
 Comirit thereby incorporates a generalization of the tab-
leau method such that a tableau may contain not only standard 
logical terms and formulas, but also non-logical structures 
such as simulations, functions, data-structures and arbitrary 
computer code. With some similarity to the methods of Poly-
Scheme (Cassimatis 2005), integration in Comirit is achieved 
by translating diverse reasoning mechanisms into the tableau 
operators for expansion, branching and closing of branches. 
Traditional logical tableau rules are used unchanged, and sim-
ulation is treated as an expansion operator (like the conjunc-
tion rule).
 More detailed explanation of the workings of Comirit tab-
leau reasoning (including an explanation of how tableau rules, 
heuristics and meta-rules are also recursively embedded inside 
the tableau) may be found in our earlier publication (Johnston 
and Williams 2008). In the following subsection, we will pro-
vide an example of a tableau as it is further extended and used 
for machine learning.

Simulation + Reasoning + Learning + Action
Of course, even with a comprehensive knowledge base, an 
intelligent system will be of limited use in any complex and 
changing environment if it is unable to learn and adapt. In-
deed, in the Toy Box Problem, the agent has no prior knowl-
edge of the specific toys that it may encounter. The system 
must autonomously acquire knowledge through interaction 
and observation of the toys.
 It turns out that simulation is ideal for observation-based 
learning. The laws of physics are generally constant and uni-
versal; an agent does not need to learn the underlying laws of 
behavior of every object. Thus, when the underlying graphical 

structure of an object can be approximated by direct observa-
tion, the learning problem is then reduced to discovering the 
hidden parameters of the object by machine learning. 
 For example, given a novel toy (e.g., a toy ring), direct ob-
servation may be used to directly instantiate a graph-based 
mesh that approximates the structure. In the 3D case, this 
would be achieved by using the 3D models extracted from 
stereographic cameras, laser scanners or time-of-flight cam-
eras; in the 2D case, this might be achieved by simple image 
segmentation.
 Once the shape of an object has been approximated by a  
graph, machine learning is used to determine underlying val-
ues of annotations: mass densities, spring constants, rigidity 
and breaking points that will result in an accurate simulation. 
These can be discovered simply by collecting observations, 
and using these observations as training instances for a pa-
rameter search algorithm (where fitness is measured by the 
accuracy of the simulation given the parameters).
 However, while simulation is well suited to learning, it is 
not necessarily obvious how to reconcile the search for con-
sistency that is fundamental to the tableau method with the 
hypotheses search and evaluation of learning. A given hypoth-
esis can not be independently declared either true or false (as 
demanded by tableau reasoning): it is only possible to com-
pare hypotheses against each other and select the ‘best’.
 Thus, in Comirit, learning is implemented by further ex-
tending the tableau reasoning algorithm. Learning in Comirit 
is treated as a ‘generate-and-test’ algorithm. Generation of 
candidate hypotheses is akin to the disjunctive branching of 
the tableau, however the testing of hypotheses is implement-
ed as a special extension of the tableau algorithm to allow 
branches to be closed due to sub-optimality.
 Learning is therefore implemented by introducing an order-
ing over branches, and then treating the tableau algorithm as 
a search for both consistent and minimal models. A branch in 
a tableau is no longer advanced or refined (as though ‘open’) 
simply if it is consistent per the traditional tableaux algorithm: 
it must be consistent and have no other consistent branch that 
compares less in the partial order. A consistent but non-mini-
mal branch is therefore said to be ‘weakly closed’.
  We define the ordering over branches using symbols that are 
stored within the tableau. The set of propositions rank(Index, 
Value) are assumed to be tautologically true in any logical 
context, but are used for evaluating the order of the branches. 
The Index is an integer indicating the order in which the Val-
ues are to be sorted: branches are first compared by the values 
with smallest indexes of any rank term in the branch; equal 
values are compared using the next smallest rank term; and so 
on4.
  To illustrate this process, consider a robot upon encounter-
ing a novel toy ball. Using just a naïve stochastic hill-climbing 
strategy5 for generating hypotheses, it may use observations 
of the object in order to build an accurate simulation of the 

4 This extension does not affect the consistency or complete-
ness of logical deduction in the framework; the rank terms 
simply prioritize the search towards minimal branches.
5 This strategy is effective in our example, but in real-world 
settings, more powerful algorithms may be used.



object, as depicted in Figure 3:
Step 1. The tableau initially contains the first observation 

of a ball and the initial hypothesis generated (many 
other control objects, meshes, functions and other data 
will be in the tableau, but these are not shown for sim-
plicity).

Step 2. The system observes movement in the ball. It gen-
erates new hypotheses, seeking to find a hypothesis 
with minimal error.

Step 3. The system simulates each hypothesis. The result of 
the simulation is compared with observations to deter-
mine the error in the hypothesis. The right branch has 
smaller error so the left branch is ‘weakly closed’.

Step 4. As with Step 2, the system observes more move-
ment and generates new hypotheses, further refining 
the current hypothesis.

Step 5. The system then simulates as with Step 3, but this 
time the left branch is minimal.

Step 6 and later. The algorithm continues yet 
again with more new observations and further 
hypothesizing.

Note also that because learning occurs in an (extend-
ed) tableau containing logic, simulations and arbitrary 
functions, the system may use logical constraints or 
ad-hoc ‘helper functions’ even when searching for val-
ues in a simulation (e.g., it may use constraint such as 
mass > 0, or a heuristic-driven hypothesis generator to 
produce better hypotheses faster).
 Furthermore, the ordering induced by rank terms 
finds application not only in driving the search for 
good hypotheses, but also in selecting between ac-
tions. Possible actions are treated as disjunctions in the 
tableau, and the error between the agent’s goals and 
its simulated expectation is computed, so that the ex-
tended tableau algorithm may select the branch with 
minimal error.

Comirit and the Toy Box Problem
The Comirit Framework combines simulation, logical 
deduction and machine learning; as such, it is ideally 
suited to the physical reasoning (well suited to simula-
tion), abstract reasoning (well-suited to tableau-based 
logical deduction), learning (as parameter search in the 
tableau) and action selection (as action search in the 
tableau) in the Toy Box Problem.
 There is insufficient space here to provide a detailed 
analysis of the problem, and indeed, this work is itself 
ongoing (hence the ‘preliminary’ nature of the solu-
tion), however our early results are encouraging.
 We conduct an experiment as depicted in Figure 4. 
A virtual 2D world is simulated with models of simple 
toys including boxes, balls, bagels and bananas all of 
varying, weight, appearance and strengths all of which 
are subject to 2D physics. The agent may only observe 
the world through 2D raster images (it cannot observe 
the underlying models), and it must construct its own 
internal models and predictions. Accuracy is measured 
by projecting the agent’s belief back into a raster im-

observation0=

hypothesis0={friction=1, elastic=1}

observation1=

hypothesis1={friction=2, elastic=1}

simulation1=

rank(1, 0.80)

(weakly closed)

hypothesis1={friction=1, elastic=2}

simulation1=

rank(1, 0.20)

observation2=

hypothesis2={friction=2, elastic=2}

simulation2=

rank(2, 0.05)

observation3=

...

hypothesis2={friction=1, elastic=3}

simulation2=

rank(2, 0.15)

(weakly closed)

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Figure 3: Learning in a tableau
age and performing a pixel-by-pixel comparison (this is a 
demanding test since it makes no allowances for ‘nearly’ cor-
rect).
 In our early experiments we have the system learn two 
hidden parameters (mass and spring constant). These two pa-
rameters are combined in a vector and serve as the hypoth-
esis space for the learning problem. Even though we use an 
extremely simple machine learning algorithm (stochastic 
hill-climbing search), a single pair of visual observations is 
sufficient for the agent to achieve 95% accuracy in predict-
ing an object’s future behavior. This astounding learning rate 
is depicted in Figure 5. The slight improvement from subse-
quent observations comes from the elimination of minor over-
fitting—the accuracy is as good as may be achieved given the 
differences in the underlying models.
 This incredible learning rate is possible because a single 
pair of images (before and after) contains thousands of pixels, 
serving as thousands of data-points for training. Indeed, this 
learning rate aligns with the human competence in develop-



ing a ‘good intuition’ for an object (whether it is heavy, hard, 
smooth, fragile, etc.) after just a fl eeting interaction.
 We have also begun exploring the use of naïve Self-Orga-
nizing Maps (SOM) (Kohonen 1998) for learning the under-
lying structure of the world (e.g., that ‘bagels’ are generally 
light, that balls are often soft, and that metallic objects are 
usually solid). In this case, the hypothesis becomes an entire 
SOM, combined with vectors for each visible object. When 
beliefs about toys are refi ned, a standard update is applied 
to the SOM. Our preliminary fi ndings are that the ability for 
the SOM to generalize across instances roughly doubles the 
learning rate and provides better initial hypotheses about un-
known objects. However, these are early fi ndings and we will 
report on this in more detail once we have refi ned the model.
 Finally, while the concrete implementation of action selec-
tion remains as future work, action selection does not pres-
ent any theoretical challenge. Given simulation that has been 
learnt, actions (or sequences of actions) are be selected by 
searching (in an extended tableau) for a sequence that, when 
performed in simulation, are closest to the agent’s goals (e.g., 
the goal of tidying-up the toys).

Conclusion
In this paper we have described an open ended benchmark 
problem that we believe is useful for evaluating and compar-
ing the practical real-world intelligence.
 We have also presented a brief overview of the Comirit ar-
chitecture (with particular emphasis on the recent extensions 
for learning), and sketched how its capabilities may be ap-
plicable to the Toy Box Problem. A comprehensive adapta-
tion and analysis remains, however our early indications (both 
qualitative and quantitative) suggest that Comirit will be able 
to ‘solve’ certain instances of the Toy Box Problem. As such, 
we believe that the pairing E1&T1 are within the realm of 
plausibility today.
 Of course, much future work remains: comprehensive 
implementation and evaluation, more challenging environ-
ments and toys, and the development of methods for learn-
ing the fundamental laws of physics and ‘learning to learn’. 
However, we believe that the Toy Box Problem provides an 
exciting framework for guiding and evaluating incremental 
progress towards systems with deep and practical real-world 
intelligence.
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