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ABSTRACT
Defeasible Logic is a promising representation for legal knowl-
edge that appears to overcome many of the deficiencies of previ-
ous approaches to representing legal knowledge. Unfortunately, an
immediate application of technology to the challenges of generat-
ing theories in the legal domain is an expensive and computation-
ally intractable problem. So, in light of the potential benefits, we
seek to find a practical algorithm that uses heuristics to discover
an approximate solution. As an outcome of this work, we have
developed an algorithm that integrates defeasible logic into a deci-
sion support system by automatically deriving its knowledge from
databases of precedents. Experiments with the new algorithm are
very promising – delivering results comparable to and exceeding
other approaches.

1. INTRODUCTION
Some projects have attempted to produce more powerful sys-

tems to aid the legal decision making progress, and while these
have experienced some success, clearly the legal community has
not whole-heartedly taken up these technologies (for they do not
form a common part of a lawyer’s tool-set, cf. [34, 32]). With this
in mind, we seek to produce a system that assists the decision mak-
ing process of law-makers, lawyers and the public, by providing a
tool that offers advice and reasons for its advice, given informa-
tion about current legal proceedings. The challenge of this work is
in the peculiar requirements of the legal domain, namely the im-
portance of extremely high accuracy, the value of judicial indepen-
dence and the need for presenting both decisions and their rationale
in a language that is natural to its users place constraints on the de-
velopment of information systems that are relatively unique to the
domain – constraints that, to date, have yet to be adequately over-
come.

By developing legal information systems, we do not seek to re-
place judges nor remove compassion from the legal system – but
the development of such systems should offer the legal community
benefits that are difficult to realise without computer technologies.
Thus, we have developed our ideas with three clear outcomes in
mind:
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• To assist in accurate and expedient decision making by pro-
viding an efficient tool that suggests and argues decisions,

• To help reach consistent decisions by drawing conclusions
consistent with precedents,

• To provide good advice and information at a low cost by of-
fering a tool that can quickly offer strategic and predictive
information without expensive construction or analysis costs.

Admittedly, the need for compassion and humanity, and the dif-
ficulty of interpreting law gives rise to cases that are far beyond the
capabilities of any existing computer systems to reason about. But
even though we cannot handle every such case, it is understood that
in many fields of legal practice, (particularly such as taxation and
traffic law) legislation and precedents are well understood and the
typical cases before the courts are “routine”. In fact, we have made
the assumption that most cases are not “landmark” decisions, but
that much of the decision making process of legal practice is rou-
tine and potential scope for partial automation. For this reason, it
seems natural that a legal information system that takes an encoded
form of the facts that are currently before a court (or the situation
of a user considering legal action) and returns suggestions that are
consistent with precedents along with justifications for the sugges-
tions would prove to be beneficial to the legal community.

Even though we seek only to assist (and not replace) experts, it is
still vitally important that any decision support system is accurate
and verifiable. We therefore have motivated our work by assuming
the following requirements:

• A transparent operation and construction which can present
an argument or justification for any conclusion it reaches,

• An internal representation of knowledge that is verifiable and
can be comprehended by those who verify it,

• A conservative mode of operation that does not draw conclu-
sions where there is doubt,

• A user-friendly approach suitable for law workers and the
general public that does not require training in formal logic to
view knowledge within the system or interpret a conclusion
of the system,

• Preferably, a low cost method of construction.

The challenge of producing legal information systems is that
it is necessary to find a practical trade-off between these require-
ments. For example, while automatically generating knowledge
bases might alleviate the problem of expense (as a result of less
need for expert knowledge in generating and structuring the data),
this method of construction typically reduces the confidence that
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users have in the soundness of the system. Similarly, heuristic
methods applied to large sets of training examples might improve
the accuracy and applicability of the system, but at the cost of a
sound and verifiable reasoning method or the ability to examine and
comprehend the underlying reasoning involved in reaching a given
conclusion. In spite of these inherent difficulties, the potential ben-
efits to the legal community are such that the successful satisfaction
of these needs by a legal decision support system (LDSS) is surely
an invaluable outcome.

2. PREVIOUS APPROACHES
Existing approaches to constructing legal expert systems fall into

two broad categories: manual encoding of rules in expert systems,
or automatic induction via machine learning techniques. Manually
encoded expert systems have the luxury of being able to use expres-
sive and verifiable internal representations, but it is an expensive
and delicate operation to produce such expert systems that may in
fact result in a system that is inconsistent with legal practice due
to the difficulty in having an expert accurately encode their knowl-
edge. On the other hand, while machine learning can reduce the
construction cost, systems based on such technologies may not be
able to reconcile automatic construction of knowledge bases with
knowledge representations that suitably encode knowledge for rea-
soning.

2.1 Case Based Reasoning
Case based reasoning systems (such as Hypo [35]) attempt to

find related cases under the assumption that a similar case is likely
to have a similar conclusion. While such an information system
certainly would benefit a lawyer in preparing an argument, the sys-
tems do not focus on the rationale of a decision but on the similar-
ity between the cases, so it is difficult for a case based reasoning
system to produce a justification for its predictions other than by
analogy. Some systems [35] attempt to resolve this difficulty by
manually inferring the principles underlying the case, but this is
really no more than producing an expert system with analogical
reasoning capabilities (and so is as expensive as other approaches
to manually constructing expert systems).

2.2 Attribute-Value and Propositional Learn-
ers

Propositional learners such as the ID3 and C4.5 decision tree in-
duction algorithms or ASSISTANT have had some success when
applied in the legal domain [13]. Unfortunately, propositional rules
are difficult to interpret by a lawyer without a computer science
background, and even with training, the resultant trees or proposi-
tional expressions are still difficult to interpret. Furthermore, the
output of such algorithms are typically expressions that seek to
classify cases with as few attributes as possible, but do not ade-
quately handle the possibility that those attributes may not even be
available at all (i.e., propositional learners do not work satisfacto-
rily with partial information) [33].

2.3 Neural Networks, Bayesian Networks and
Other Continuous Model Fitting

Projects such as the Split-Up project [36] which applied neural
networks to family law, often achieve high levels of accuracy. But
unfortunately, while approaches to model fitting over continuous
variables such as neural networks give very high accuracy by learn-
ing from examples and have proven successes in disparate fields, in
general there are difficulties in applying them successfully in a legal
context. The reasoning behind such methods is simply an adaptive

non-linear function and, as such, it is extremely difficult to generate
explanations from their output, or even to verify their correctness.

2.4 Association Rules
Some work has been done towards using association rules (mined

by the Apriori algorithm [1]) as a basis for an LDSS. While this is
currently work-in-progress (and in fact was the initial motivation
for this project), it seems unlikely that taking this approach alone is
going to result in significant success. Association rule mining finds
“general associations” between properties, but does not produce
rules. A specific field in the legal domain might have several guid-
ing rules with many exceptions and so is guided by not only the
associations between assumptions and a conclusion, but also ex-
ceptions to the associations – because of this, association rule min-
ers are unlikely to be a general solution to the problem of learning
the reasoning principles underlying law. Furthermore, care must
be taken to ensure that mined associations are not simply common
properties of the domain, but are indeed deciding factors. These
difficulties with interpreting association rules, and the challenge of
integrating them into a formal model suggests that association rules
might be better suited as a heuristic device as opposed to an end in
itself.

2.5 Inductive Logic Programming
Inductive logic programming (ILP) is concerned with produc-

ing pure negation-free Prolog programs (theories in Horn clause
logic) from example sets of inputs and outputs, and usually oper-
ate in either a bottom-up approach by generalising examples or a
top-down approach specialising the empty program into a suitable
theory [25]. In the literature, there appears to be limited application
of ILP in the legal domain, which may be due to the monotonicity
of Horn clause logic (we will address the monotonicity issue later)
being unsuitable for law. The simplicity of theories induced by ILP
systems in their typical domains is significant, so we have drawn
from the body of work in ILP for our research, but have adapted
some of the benefits into a framework that handles the defeasibility
of law directly.

There is some existing work with non-monotonic ILP that seeks
to overcome some of the limitations of the closed world assump-
tion and monotonicity of the logic used within ILP. ILP approaches
have been used [15, 27] to induce theories in Reiter’s Default logic
– a similar strategy [23] has also been used to learn Extended Logic
programs (which represents a subset of default logic). While these
approaches are near what we are attempting to achieve, finding the
extension of a Default logic theory is an NP-complete problem, and
Default logic is a form of expression that we believe is difficult for
untrained users to interpret, particularly as a language for describ-
ing legal systems.

3. DEFEASIBLE LOGIC
While the aforementioned existing approaches have experienced

a certain degree of success, each face deficiencies that we believe
will limit the widespread acceptance of the techniques in the legal
domain. The challenge seems to be that of finding a balance be-
tween having a representation for efficient reasoning and the cost
of encoding knowledge into that representation. In [29], Prakken
describes several non-monotonic logics that appear to have a more
natural correspondence to legal reasoning than other forms of for-
mal expression. Furthermore, Defeasible Logic, a form of non-
monotonic reasoning invented by Donald Nute [28] (and related to
one of the logics presented by Prakken) has a particularly natural
expression that permits the expression of (normative) systems with
a close correspondence between plain-language expression and its



Rule Explanation
r1: ⇒ ¬guilty Innocence is presumed
r2: evidence ⇒ guilty Evidence can show guilt
r3: ¬motive ; ¬guilty Lack of motive can suggest innocence
r4: alibi ⇒ ¬guilty An alibi can prove innocence

r4� r3, r3� r2, r2� r1

Figure 1: Hypothetical Criminal Law Theory

encoded form [6, 2, 14, 19]. In fact, [18, 20] illustrates the use of
defeasible reasoning within a multi-agent system for automated ne-
gotiation. Practical applications of defeasible reasoning have been
proposed for executable regulations [6, 2], contracts [31] and busi-
ness rules [21]. The clarity of a defeasible logic theory to an un-
trained user can be further enhanced during a validation phase – a
domain expert can annotate the rules of a defeasible logic theory
with plain-English expressions that can be displayed for the user as
an “explanation” of the conclusion drawn from the theory.

Defeasible logic, being a non-monotonic logic handles partial
knowledge well [29, 17], has a sceptical reasoning process [3, 5],
is equivalent to or subsumes many other defeasible logics [3, 7]
and has an algorithm for computing its extension in linear time and
space [4, 26]. These favourable properties of defeasible logic are
important for legal reasoning. Law abounds in cases involving par-
tial knowledge, and any reasonable decision support system must
act in a conservative and sceptical way (for it is better to giveno
answer thanan incorrect answer). The computational efficiency is
also important, not only for drawing conclusions from a theory, but
also because it lends itself to efficient algorithms for the induction
of theories from datasets. While defeasible logic does not allow
meta-level reasoning about the purpose or backing of rules, for ex-
ample, the logic remains a powerful [6, 2, 14, 19] and natural form
of expression that is relevant for practical, routine legal practice
and rules in a defeasible logic theory correspond to the untrained
understanding of a “rule”.

For these reasons it seems that defeasible logic would be a suit-
able representation for knowledge in an LDSS – the challenge that
remains is the automatic or semi-automatic creation of such knowl-
edge from precedents.

A defeasible logic theory is a collection of rules that permit us
to reason about a set of facts or known truths to reach a set of de-
feasible conclusions. Because multiple rules may be applicable in
any given situation, a defeasible logic theory additionally includes
a relation for resolving these conflicts.

For example, consider the theory about criminal law in Figure 1.
The theory consists of two components:

• A set of rules that can be used to conclude the guilt or in-
nocence of the defendant in the event of certain facts being
presented in the court of law, and

• An acyclic transitive relation over the rules that indicates the
relative strength of each rule.1

Suppose we are given the theory of Figure 1, and a set of facts,
{evidence,alibi}, that have been presented to the court of law and
are assumed true, then we can defeasibly prove the innocence of
the defendant, for:

1We have only denoted the relevant mappings, the actual superi-
ority relation would in fact be the least acyclic transitive relation
containing the mappings denoted – in this case, the transitive clo-
sure of these mappings.

• We note thatr4 permits us to conclude¬guilty, and

• The necessary conditions for the application ofr4 hold,
namely it is known thatalibi is a fact (or has been defeasibly
proven true), and

• Of the remaining rules, the only one that reaches the con-
tradictory conclusionguilty and for which its necessary con-
ditions are satisfied, isr2, but r4 is stronger thanr2 (i.e.,
r4� r2) sor2 does not override the conclusion2.

A defeasible logic theory Tis a pair(R,�) whereR is a finite set
of rules and� is a partially ordered3 relation defining superiority
overR.

Rules are defined overliterals, where a literal is either an atomic
propositional variablea or its negation,¬a. Given a literal,p, the
complement,∼p of that literal is defined to bea if p is of the form
¬a, and¬a if p is of the forma.

There are two kinds of rules,defeasible rulesanddefeaters. De-
feasible rulescan be used to defeasibly prove some conclusion, but
defeaterscan only be used to prevent a conclusion being reached.
Typically a third kind of rule is permitted,strict rules, which have
a more classical meaning in that they are monotonic and cannot be
defeated. We disregard strict rules in application to the automatic
induction of defeasible theories because it is impossible to con-
clude a strict correlation with only the partial knowledge possible
with finite datasets (in any case, strict rules can be simulated with
defeasible rules that are ‘high’ in the superiority relation such that
they can rarely be defeated).

A defeasible ruleis denoted byQ⇒ p whereQ is a set of literals
denoting the premises of the rule, andp is a single literal denoting
the conclusion upon application of the rule. A rule of this form can
be interpreted to say that whenever the literals inQ are known to
be facts or to be defeasibly provable, then we can defeasibly prove
p (by “defeasibly”, we mean that we can only provep tentatively,
and is subject to possible defeat by other, stronger, rules).

A defeateris a rule that is denoted byQ ; p whereQ is a set
of literals denoting the premises of the rule, andp is a single literal
denoting the counter-conclusion that can be used upon application
of the rule. A defeater is used to prevent the conclusionp. That
is, a rule of this form can be interpreted to say that whenever the
literals inQ are known to be facts or to be defeasibly provable, then
we can only reach a conclusion that is consistent withp (subject to
defeat by other rules); we cannot prove∼p, but may prove p if
there are other rules supporting this position, otherwise we may
reach no conclusion at all. Note that with a pair of rules of the form
Q; a andQ;¬a, each at the same superiority, we can block any
conclusion with respect toa.

2Note also that the ruler3 cannot be used to prove innocence, but
merely to disprove guilt.
3Though, in the general case, the superiority relation is simply a
binary relation over the set of rules.



We defineAnte(r) = Q wherer is a rule of the formQ⇒ p or
Q ; p; that is,Ante(r) is the set of premises or antecedents of the
rule r (i.e.,Ante(r) is the left hand side of the rule).

We reason about a set of facts (of a given case)F with respect to
a defeasible theoryT to reach defeasible or tentative conclusions of
that particular case. A conclusion of a defeasible theoryT and facts
F is conventionally a tagged literal of one of the following forms:

• +∂ p, which is intended to mean thatp is defeasibly provable
in T overF

• −∂ p, which is intended to mean thatp is not defeasibly prov-
able inT overF .

We define an entailment relation,T,F ` c, which indicates that
c is a conclusion of the set of factsF with respect to theoryT. The
entailment relation is defined by the proof mechanism expounded
in [3, 5], and which is briefly presented here for completeness.

A proof within a defeasible logic theoryT given a set of factsF
is a finite sequenceP= 〈p1, p2, . . .〉 of tagged literals satisfying the
two inference rules that follow.P(1..i) denotes the initial part of
the sequence P, of lengthi, andP(i) denotes theith element of P.
Rd denotes the set of defeasible rules inR (i.e., those rules that are
not defeaters) andR[q] denotes the set of rules inRwith conclusion
q.

+∂ :
If P(i +1) = +∂ p then either
p∈ F or

(1) ∃r ∈ Rd[p]∀q∈ Ante(r) : +∂q∈ P(1..i) and
(2) ∀s∈ R[∼p] either

(a)∃q∈ Ante(s) :−∂q∈ P(1..i) or
(b)∃t ∈ Rd[p] such that
∀q∈ Ante(t) : +∂q∈ P(1..i) andt � s.

−∂ :
If P(i +1) =−∂ p then
p 6∈ F and

(1) ∀r ∈ Rd[p] ∃q∈ Ante(r) :−∂q∈ P(1..i) or
(2) ∃s∈ R[∼p] such that

(a)∀q∈ Ante(s) : +∂q∈ P(1..i) and
(b)∀t ∈ Rd[p] either
∃q∈ Ante(t) :−∂q∈ P(1..i) or t 6� s.

Or, in plain English, we use the conclusion of the strongest of the
defeasible rules that have all premises satisfied. If no such rule
exists, or if there is any defeater with the opposite conclusion that
is not stronger, then we have no conclusion.

For simplicity, we disregard the tagging, and instead represent
T,F ` +∂ p as simplyT,F ` p, and useT,F `?a to denote the
case that bothT,F `−∂a andT,F `−∂¬a holds (that is,T,F `?a
denotes the case that nothing can be defeasibly proven with respect
to a). With a partially ordered superiority relation, only these three
possibilities can occur [4, 12].

4. INDUCING DEFEASIBLE THEORIES
FROM DATASETS

When automatically generating a logical theory from precedents,
two important considerations are how well the theory models the
domain and how well the theory generalises to new cases. While
judging what constitutes a good degree of generalisation is a sub-
jective problem that can have no definitive answer, the peculiari-
ties of producing LDSSs are such that we can assume (and note in
practice) that a minimal theory that is consistent with and describes

the existing precedents is most desirable. This is because having a
smaller theory results in rules that cover more examples and there-
fore should both generalise well and realistically match the human
preference for using simple reasoning processes. A further reason
for seeking a minimal theory is that, with less rules in the theory, it
is likely to be easier to have a domain expert comprehend, provide
feedback on and improve the induced theory.

This goal gives rise to two concerns:

• Is therealwaysa set of minimal theories for any dataset?

• Is the generation of minimal theories tractable?

Two results are important here; that it is possible to find a theory
that describes a dataset, and that finding the optimal solution is an
NP optimisation problem. We begin with some definitions first.

We define adataset Das a finite set of pairs of the form(F,c),
whereF is a set of literals denoting the known truths or facts of
the particular precedent, and wherec is either a literal or the term
?a indicating that no conclusion could be reached or is known with
respect to propositional variablea (?a is usually only introduced
during pre-processing). We say a dataset is consistent if every con-
clusion is formed from the same propositional variable, and if for
all recordsd1 = (F1,c1) ∈D andd2 = (F2,c2) ∈D, if F1 = F2 then
c1 = c2. In other words, a dataset is consistent if no two identi-
cal cases have different conclusions. Given a consistent datasetD
we defineVar(D) = a, wherea is the propositional variable that
appears in every conclusion.

For convenience we will assume that the datasets are consistent.
Whenever this assumption is invalid (possibly due to noise, two
identical borderline cases with different conclusions, or changing
legal practice), it can be corrected by pre-processing it. This might
mean deleting the records that are causing the inconsistency, using
the result from the recent record, or replacing all such inconsistent
records with a new record of the form(F,?a) to indicate that given
the particular factsF that are causing the inconsistencies, we do
not have any known conclusion.

It should be noted that the definition of a dataset includes the as-
sumption of a single propositional variable to be used over all the
conclusions. In applications where multiple conclusions are neces-
sary, this limitation can be trivially overcome by processing each
class of conclusions with a different dataset and repeated applica-
tion of the algorithm presented later, in Section 5 of this paper.

We say a defeasible logic theory,T, has anaccuracyof x% with
respect to a given dataset,D, if for x% of the recordsd = (F,c)∈D,
it can be proven thatT,F ` c. We say a theorydescribesa dataset
if it is 100% accurate, that is for each recordd = (F,c) ∈ D, it can
be proven thatT,F ` c.

THEOREM 1. [24] Given any consistent dataset D, there exists
at least one theory that describes the dataset.

In fact, it turns out that for any given datasetD, there can be many
theories that describe the dataset. While we could use the theory
generated in the construction used for the proof of Theorem 1, this
is unsatisfying because using such a theory becomes no more than
a primitive case-based reasoning system. Instead, we look to find
a minimal theory, that is a theory that describes the dataset and has
the minimal number of rules. Because a minimal theory has few
rules, we would expect each rule to carry more significance and
have greater predictive power than might the rules of a larger the-
ory describing the same dataset. For this reason we expect that a
minimal theory would give the best generalisation of the dataset
and would be most likely to perform well on unseen cases. We
believe that finding a minimal theory also simplifies the compre-
hension effort required to have a human expert verify a theory, and



set theory,T = ( /0, /0)
do

invoke Rule Search Routine (Figure 3), to find a new ruler
if r 6= nil

set T, to T + r
while r 6= nil

Figure 2: Defeasible Theory Search Algorithm

that simpler representations are more likely to match the reasoning
of human experts in their own practice than needlessly convoluted
rules or an individual case-based-reasoning approach.

Unfortunately it turns out that the problem of generating a min-
imal theory is NP-hard. Under the assumption thatP 6= NP, and
given the NP-hardness of the problem we conclude that the genera-
tion of minimal theories is intractable. The proof of NP-hardness is
by showing that instances of the hitting set problem (SP8 in [16])
or of the minimum hitting set problem (SP7 in [8]) can be trans-
formed to a dataset of precedents in polynomial time, such that the
minimal theory of the precedents can be used to solve the decision
procedure or optimisation problem respectively. This concern is the
subject of the following theorem regarding a decision procedure for
which NP-hardness of the corresponding optimisation problem fol-
lows immediately:

THEOREM 2. [24] Given a dataset D and a positive integer
k′ ≤ |D|, the problem of deciding whether there exists a theory
T = (R,�) of size|R| ≤ k′ that describes D is NP-complete.

5. GENERATING SMALL THEORIES
WITH HEURISTICS

Given the intractability of finding minimal theories, we instead
look towards heuristics and clever search strategies to find approx-
imate, “small” theories. Much of the existing work on generation
of small logical theories from examples is in the context of induc-
tive logic programming (ILP) and so drawing inspiration from this
work, we have developed a new algorithm that uses top-down re-
finement techniques, similar to work in ILP, to improve the per-
formance on datasets. The algorithm, HeRO, operates in a greedy,
best-first, branch-and-bound fashion.

The algorithm starts with an empty theory and iteratively adds
rules to the theory in a greedy fashion so as to improve the accu-
racy of the theory. With every iteration the search space of possible
rules is explored using a branch and bound algorithm to select the
rule with the highest gain. This greedy mode of operation is not un-
realistic because rules that offer a high degree of predictive power
should naturally offer the greatest degree of improvement in accu-
racy of the theory (and indeed, practice confirms that this is the case
or at least a suitable approximation of reality). Pseudocode for the
high-level operation of the algorithm is detailed in Figure 2.

We now turn our attention to the search algorithm used for se-
lecting rules and their appropriate positions to add to the theory.

If a rule r = (Q⇒ c) or r = (Q ; c) is added at some position
in the superiority relation� of a theoryT = (R,�), to give a new
theoryT ′, we define the gain,gainT,r,T ′ , of that rule to be the dif-
ference between the number of records,d = (F,c) ∈ D, for which
T ′,F ` c and the number of records for whichT,F ` c. That is, the
gain of a rule is the increase in the accuracy of a theory that is a
result of adding the rule to the theory.

This definition of gain can be equivalently stated in terms of “in-
correct conclusions that are corrected by adding the new rule”, and
“correct conclusions that are blocked by adding the new rule”, as
follows:

gainT,r,T ′ =#{(F,c) ∈ D|T ′,F ` c}−
#{(F,c) ∈ D|T,F ` c}

=#{(F,c) ∈ D|T ′,F ` c∧T,F 6` c}−
#{(F,c) ∈ D|T ′,F 6` c∧T,F ` c}

We derive an upper bound forgainT,r,T ′ by noting that if the ruler
is refined by adding literals to the premises to make the rule more
specific, then the number of “incorrect conclusions that are cor-
rected by adding the new rule” must decrease because a subset (but
no more) of these “corrections” will still be applicable after refining
the rule, and the number of “correct conclusions that are blocked by
adding the new rule” will also decrease because for the same rea-
son a subset (and no more) of these “blocks” will still be applicable
after refining the rule. Under ideal circumstances, the refinement
of a rule would result in no reduction of “corrections”, but would
eliminate all “blocking”. It is this ideal condition that leads us to
the upper bound,maxgainT,r,T ′ for any refinement of the ruler:

maxgainT,r,T ′ = #{(F,c) ∈ D|T ′,F ` c∧T,F 6` c}

These expressions forgainT,r,T ′ andmaxgainT,r,T ′ can be further re-
fined if required to support a legal practice that is known to evolve
over time. Instead of simply counting records with the # operator,
it is possible to compute a weighted sum, with the contribution of
each record inversely proportional to the age of the record. This
approach places greater emphasis on more recent conclusions, and
allows theories to be generated for datasets that may contain evolu-
tionary change.

Now, by either best-first or simply breadth-first search, we can
explore the search space by maintaining a variable that holds the
best rule found so far, and only exploring those branches of the
search space where the upper bound,maxgainT,r,T ′ , is strictly
greater than the value ofgainT,r,T ′ for bestgain. Thebestgaincan
then be added to the current theoryT (if it would result in a pos-
itive gain), before repeating the search again for the next iteration
(or halting if no more rules exist that result in positive gain).

By only considering totally ordered superiority relations, it is
possible to obtain an efficient implementation of this algorithm.
For each position in the total order, the weaker rules are imme-
diately applied to the dataset to give tentative conclusions and the
records in the dataset to which stronger rules apply are discarded
(because if we added a rule at this position in the superiority rela-
tion it would have no effect on the conclusions of records for which
one of the stronger rules is applicable). This initial processing al-
lows thegainT,r,T ′ andmaxgainT,r,T ′ to be efficiently computed in a
single pass over the dataset. Furthermore, additional performance



set best gain so far,bg← 0
set best premises,bp← nil

set best conclusion,bc← nil

foreach position in the totally ordered superiority relation
set weaker←the existing rules that are weaker than the current position
set stronger←the existing rules that are stronger than the current position
set priority queue,q← /0
using q enqueue /0 with priority 0
while q 6= /0

set current premisep = q.dequeue()
compute preferred conclusion,c, of p,

gain,g, of p, and
maxgain,mg, of p

if g > bg
set bg← g
set bp← p
set bc← c

if mg> bg
foreach refinementp′ of p

q.enqueue(p′)
if bg> 0

return (bg⇒ c) and current position
else

return nil

Figure 3: Rule Search Routine

gains are possible by associating with each set of premises, the
records in the dataset that are applicable (and maintaining this set
during each set-based computation). Restricting the algorithm to
only totally ordered superiority relations does not appear to result
in poorer theories.

Pseudocode for an implementation of the greedy rule search ap-
pears in Figure 3. A best-first search appears, but this can be
trivially modified to a breadth-first search by replacing the prior-
ity queue with a standard queue. Because it is possible to com-
pute the accuracy gain of a ruler = (Q⇒ p and it’s negation
r ′ = (Q⇒ ¬p) in a single pass, we compute both simultaneously
for a given premise setQ, and return the conclusion,gain and
maxgainof the rule with greater accuracy gain.

6. EXPERIMENTAL RESULTS
The HeRO algorithm has been implemented in Prolog and C#.

In this section we evaluate how faithful a theory induced by HeRO
is, compared to the known theory underlying the dataset. We do
this by manually creating a theory, randomly generating a dataset
of 1000 records (including “noise” variables) that is consistent with
the theory, and running HeRO on the dataset. HeRO gives impres-
sively accurate results on such theories, and executes within 0.5
seconds. We will analyse a selection of the important outcomes on
common patterns identified in [19]:

6.1 Simple Exception
A simple exception occurs when a rule is an exception to a base

rule that results in the opposite conclusion. Consider two defeasible
rules,ar1 : a⇒ p andar2 : a,b⇒¬p. ar2 is an exception toar1
becausea is associated withp unless in the presence ofb, it is
associated with¬p.

Source Theory
r1: a ⇒ p
r2: a, b ⇒ ¬p
r3: a, c ; ¬p
r4: e ⇒ p

r2� r1, r3� r1

Induced Theory
r1: a ⇒ p
r2: a, b ⇒ ¬p
r3: e ⇒ p
r4: a, b ; ¬p
r5: a, c ; ¬p
r5� r4, r4� r3, r3� r2, r2� r1

Though the induced theory is not identical to the source theory,
there is an extremely high correspondence (and the two theories
are logically equivalent). The only significant difference is the ad-
ditional ruler4 that appears in the induced theory – this rule is to
compensate for the fact that the superiority relation of the source
theory is a partial order, and HeRO considers only totally ordered
superiority relations.

6.2 Aggregate vs Separate
The rule group called Aggregate vs Separate rules depicts sit-

uations where a choice must be made in favour of one rule with
aggregated antecedents or two or more rules, each with separate
antecedents. For example,a and b are, independently, sufficient
reasons forp but, very often they occur simultaneously. Hence the
choice is between a rulear1 : a,b⇒ p and two rulesar2 : a⇒ p
andar3 : b⇒ p.

Source Theory
r1: a ⇒ p
r2: b ⇒ p

/0

Induced Theory
r1: a ⇒ p
r2: b ⇒ p

r2� r1

The problem of separating aggregate rules (a,b⇒ p) from sepa-
rate rules (a⇒ pandb⇒ p), and yet even ifaandbappear together



Algorithm DefGen DefGen HeRO HeRO
Minimum support 5 10
Minimum confidence 100 75
Target theory size 8 no limit
Accuracy 87% 84% 90% 97%
Rules generated 46 55 8 16
Runtime 0.4s 0.5s 2s 20s

Table 1: Comparison of Results for Credit Application Dataset

extremely often, HeRO correctly identifies the underlying theory as
two separate rules.

6.3 General vs Specific
The rule group called General Vs Specific rules depicts situations

where a choice must be made between a general rule and one that
is more specific.

Source Theory
r1: a ⇒ p
r2: a, b ⇒ p

r5� r4

Induced Theory
r1: a ⇒ p

/0

The problem of distinguishing between a general (a⇒ p) and
a specific (a,b⇒ p) rule is relevant because in some contexts the
more specific (and complex) rule is preferred, and in others the
more general rule is preferred [19]. This problem contradicts our
assumption that a minimal theory is best, and we believe that con-
texts requiring the more specific rule are somewhat atypical. In
the source theory above, the second rule is in fact redundant, and
HeRO has correctly identified the minimal equivalent theory. This
sample case highlights the difference between optimistic and pes-
simistic modes of operations; if, for example,r1 in the source the-
ory was never exercised – thatb always occurred witha – then it
might be argued that we should not generalize to cases in whichb
does not occur witha. On real datasets, we have not encountered
this problem, but it is possible to alter HeRO to accommodate this
requirement.

7. COMPARISON WITH OTHER
APPROACHES

The HeRO algorithm has been implemented in C# and Pro-
log. A C# implementation was necessary due to the importance
of set-based operations in the algorithm that require careful use of
hash-based data structures to support rapid testing of set member-
ship conditions. Another significant optimisation that offers per-
formance improvement is associating records in the dataset with
any set that is a subset of the premises of the record, thus allowing
rapid identification of the records of a rule but without requiring
excessive maintenance at each constructive set operation.

In this section we compare the implementation of the HeRO al-
gorithm with other approaches to machine learning in the legal do-
main.

7.1 DefGen
The approach used by DefGen[9] follows the intent of original

work by Governatori and Stranieri[19]. This work is motivated by
the syntactic similarities, and the certain degree of semantic overlap
between mined association rules and defeasible logic theories. The
intent of this work is the development of a system that generates

defeasible logic rules by analyzing the output of the Apriori [1] as-
sociation rule mining algorithm. The rationale of such an approach
is that it is possible to benefit from the well-understood and highly
efficient algorithms (such as [1, 22]) for association rule mining,
and then post-process the association rules to identify a suitable
defeasible logic theory.

The algorithm has been tested against a Japanese credit appli-
cation dataset4 for benchmarking machine learning algorithms that
contains 125 records and is supplied with a Lisp domain theory de-
scribing 10 attributes of credit applicants and the outcome of their
applications. Apriori cannot be applied to datasets containing car-
dinal features, so these were binned according to categories used
within the domain theory. A similar limitation also applies to our
algorithm, so the same binning has been used so that the values can
be mapped to a set of 27 propositional variables. [9] reports that by
changing the minimum support and confidence used by the Apriori
algorithm, is possible to obtain theories that offer higher accuracy
or that result in fewer rules. He selects two combinations of sup-
port and confidence that give a practical balance between theory
size and accuracy. In contrast, our algorithm, HeRO, seeks to find
only a minimal theory – the only parameterisation possible is the
trade of runtime for accuracy by halting the algorithm after a prede-
fined number of iterations. Table 1 compares the two approaches.

Clearly, HeRO offers vast improvements over DefGen in both
accuracy and the number of rules generated (fewer rules suggests a
greater degree of generalization). Even though these results pertain
to initial implementations of the corresponding theoretical works,
the dramatic differences between these two approaches appear to be
rooted in two problems. First, while defeasible logic can indeed be
used to represent associations between premises and conclusions,
defeasible logic, by virtue of the superiority relation, can represent
“disassociations” (or exceptions to associations) that are difficult
to represent or even detect with association rule mining algorithms
that work with minimum supports. And second, identifying and
collecting association rules into defeasible logic rules is a combi-
natorial optimisation problem for which finding an optimal theory
is also likely to be intractable, and so this approach must also re-
sort to the use of heuristics – only three patterns in defeasible logic
were identified and used in the DefGen algorithm, a more complete
version of DefGen would need to recognise far more patterns in the
mined association rules and then optimise the trade-off between se-
lecting the simpler or more complex patterns.

DefGen offers better runtime performance, and is arguably more
likely to be scalable, given highly efficient association rule mining
algorithms that exist. This certainly does not rule out HeRO for
practical problems – the Bench-Capon dataset discussed below has
more records and features, and yet has comparable runtimes. In
practice, it appears that the primary limiting factor of HeRO is not
the size of the dataset, but the complexity of the underlying theory

4Freely Available at the UCI Machine Learning repository,
http://www.ics.uci.edu/ mlearn/MLRepository.html



(in such theories the branch-and-bound techniques are less effec-
tive). This particular limitation is not of serious concern, for if a
particular dataset has a very complex underlying theory then the
output of HeRO may be too complex for a human to reasonably
verify – in such situations, the accuracy of HeRO is comparable to
other approaches, but offers no distinct advantage over other ap-
proaches that are unable to be verified.

7.2 Neural Networks and Association Rules
In [10], Bench-Capon justifies the development of legal informa-

tion systems such as that discussed in this paper, and trains neural
networks on existing cases. Indeed, Bench-Capon faces the same
problem we discussed in section 2.3 – he admits that a trained neu-
ral network is difficult to comprehensively verify, and it is clear that
a neural network offers little justification for its answers – much
work is necessary to explain to non-technical law workers how to
interpret and use the output of a neural network.

Bench-Capon used synthetic datasets describing a fictional wel-
fare benefits scheme paid to pensioners that suffer expenses visiting
a spouse in hospital. The decision of whether or not to pay the pen-
sioner is subject to the following conditions:

1. The person should be of pensionable age (60 for a woman,
65 for a man);

2. The person should have paid contributions in four out of the
last five relevant contribution years;

3. The person should be a spouse of the patient;

4. The person should not be absent from the UK;

5. The person should not have capital resources amounting to
£30,000;

6. If the relative is an in-patient the hospital should be within a
certain distance: if an out-patient, beyond that distance.

These six conditions immediately translate into 12 features (age,
gender, 5 contributions, spouse, absence, capital resources, dis-
tance, in-patient), which form the dataset along with 52 additional
“noise” features that have no influence on the conclusion.

The neural networks that Bench-Capon trained on 2400 such
records obtained the following success rates [10]:

One hidden layer: 99.25%
Two hidden layers: 98.90%
Three hidden layers: 98.75%

Even though this accuracy is quite high, it is of course difficult to
judge how faithfully the conditions for payment are encoded within
the network, and so it is hard to rationalize the use of such technol-
ogy in legal practice if alternatives exist.

To apply the HeRO algorithm to the same dataset, the input fea-
tures must first be binned to a set of prepositional variables. We
do so in the same manner as Bench-Capon when preprocessing for
Apriori, using some domain knowledge to intelligently partition
the domain of each feature. The following defeasible logic theory
is generated by HeRO, with an accuracy of 99.8% (in order of su-
periority, from weakest to strongest):

⇒ grant
distanceshort, inpatient ⇒ ¬grant

¬spouse ⇒ ¬grant
absent ⇒ ¬grant

age lt 60 ⇒ ¬grant
capital gt 3000 ⇒ ¬grant

It is trivial to alter the algorithm to prefer scepticism when two
rules have equal accuracy gain; doing so results in an even sim-
pler theory with the same accuracy (in order of superiority, from
weakest to strongest):

⇒ ¬grant
spouse, ¬absent,¬age lt 60,

¬capital gt 3000 ⇒ grant
distanceshort, inpatient ⇒ ¬grant

Clearly, this theory has a very high correspondence to the original
conditions – it would be easy for a non-technical law worker to un-
derstand this theory (and, in fact, could be manually annotated by
a domain expert so that plain-English explanations for conclusions
can be presented to the user when the theory is used). In fact, even
if we ignore the fact that defeasible logic allows such clearly in-
terpreted theories to be generated, the high accuracy is competitive
with the results produced by Bench-Capon’s neural networks.

Bench-Capon [10] points out that it is not necessary for an in-
duced theory to encode all rules of an underlying domain theory
in order to attain a high degree of accuracy. This is illustrated in
the generated theory above: high accuracy is reached even though
HeRO does not mine the second rule of the underlying domain the-
ory (an n-out-of-m rule). In order to decrease the accuracy of such
incompletely mined models, Bench-Capon creates a second dataset
specifically designed to ensure that each condition is exercised in
isolation. Bench-Capon reports just 77% accuracy with a neural
network approach on his second datase – HeRO performs just as
poorly on this dataset too (82% accuracy). Because n-out-of-m
rules can only be represented as a set ofmCn rules that individually
express each condition, such conditions require far larger datasets
and more intensive searches to successfully mine (it was therefore
not possible to perform an exhaustive search of the rules on the
low-end systems used). However, the accuracy of HeRO is compa-
rable to Bench-Capon’s neural networks, and it is likely that with
a more memory efficient implementation (the current implementa-
tion is unable to explore the entire search space when the upper
bound of the branch and bound algorithm is too small – that is,
when the theory is almost complete, but a small percentage of error
remains) it is conceivable that HeRO could mine all the required
rules to express the n-out-of-m rule. In practice, in the few cases
where n-out-of-m rules are suspected to exist in the domain theory
(i.e., when HeRO gives poor results), it may be necessary to man-
ually augment the mined theory with the correct n-out-of-m rule,
possibly extending the syntax of defeasible logic to support such a
declaration. This is, of course, an area for further research.

In [11] Bench-Capon manually analyses association rules gen-
erated from the dataset, identifying both noise variables and some
conditions of the domain theory, but does not offer any immediate
suggestions for automation. It is not possible to directly compare
such work, but that similar trends are identified by HeRO without
the manual effort is significant. Furthermore, the techniques he
used lend themselves to strategies for coping with scalability. For
example, Apriori (or a suitable entropy measure) could be used to
preprocess datasets for HeRO in order to identify and remove noise
attributes from the search space.

8. FUTURE WORK
A worthwhile extension of this work is to further examine the

correspondences between horn-clause logic and defeasible logic.
The similarity between the defeasible logic theory minimization
problem and ILP is such that there may be benefit in exploring map-
pings and further correspondences between the two logics – possi-



bly to offer new benefits to both this work and ILP systems. An-
toniou et al [7] have demonstrated that defeasible logic subsumes
logic programming without negation as failure, and so our algo-
rithm might provide new approaches for the ILP community.

Several decision tree induction algorithms (such as C4.5[30])
can operate in a rule generation mode that produces theories resem-
bling defeasible logic. Such algorithms do not specifically seek to
optimise their output as a defeasible theory but it will be worth-
while to compare the relative sizes of the theories generated by of
each of these techniques.

An implicit assumption in this work is in the existence of struc-
tured datasets that contain propositional attributes. Clearly, this is
not always the case: many attributes are continuous, and many
domains of law are too complex to express assumptions in a flat
propositional structure. We intend to explore the use of semi-
structured representations of precedents such as XML as an input to
this algorithm, in the hope that it might bring even greater relevance
to this work.
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