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Abstract 
Comirit is a framework for commonsense reasoning that 
combines simulation, logical deduction and passive machine 
learning. While a passive, observation-driven approach to 
learning is safe and highly conservative, it is limited to inte-
raction only with those objects that it has previously ob-
served. In this paper we describe a preliminary exploration 
of methods for extending Comirit to allow safe action selec-
tion in uncertain situations, and to allow reward-maximizing 
selection of behaviors. 

Introduction   
Comirit is an open-ended framework that performs multi-
representation hybrid reasoning for commonsense reason-
ing. Comirit combines simulation, logical deduction and 
machine learning though a unified mechanism that is based 
upon a generalization of the method of analytic tableaux.  
 In our previous work, we viewed autonomous learning 
as principally a ‘passive’ or ‘background’ activity. The 
system continuously observes the environment, attempting 
to predict future states, and uses prediction error to update 
its internal model of the world. This mode of learning is 
integrated as a greedy search algorithm that is implemented 
by further extending the tableaux reasoning algorithm to 
prioritize branches of the tableau (i.e., hypotheses about 
the environment) according to their error. 
 In this paper, we describe preliminary work that consid-
ers how those same mechanisms that enabled the integra-
tion of passive machine learning, may also be adapted both 
to directing action in reward-driven environments and 
towards a more active mode of learning and behavior. We 
apply the same greedy algorithm used for passive learning, 
but generate conservative initial hypotheses from more 
widely sampling prior knowledge, and adapt the mechan-
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isms for selecting error minimizing hypotheses towards the 
selection of actions with higher expected rewards. 
 We begin this paper with a review of the Comirit 
framework and its motivation. We then consider a variety 
of approaches to integrating active learning and reward-
maximization into the existing framework, and conclude 
with an overview of future directions. 

Background 
The original development of Comirit was inspired by the 
state of modern animations, simulations and computer 
games. Modern blockbuster computer games offer realistic 
open-ended ‘sandbox’ environments for unlimited experi-
mentation and interaction with compelling breadth and 
depth. While expertise and knowledge is only expressed 
implicitly in these systems, they appear to lack the brittle-
ness and expense associated with explicit formalization of 
commonsense in logical languages. We wondered, there-
fore, whether it would be possible to exploit simulation as 
a resource of commonsense knowledge, and as a mechan-
ism for commonsense reasoning. 
 While simulation is a powerful heuristic for deducing 
possible and likely future states from current conditions, a 
weakness of simulation is that it must follow the ‘arrow-of-
time’. That is, it is impossible to simulate a complex situa-
tion in reverse to deduce likely causes or precursors of a 
situation: one cannot simulate spilled milk in reverse to 
discover a likely cause—it is far easier to simulate the 
outcome from a particular cause such as dropping an open 
milk carton onto the floor. When greater deductive power 
is required than that of forward-running simulations, it is 
necessary to augment simulation with other mechanisms. 
 Comirit is therefore a proposal to extend simulation-
based reasoning into a multi-representational framework. 
The framework has an open-ended architecture that (so far) 
combines simulation, formal logical deduction and cumu-
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lative learning into a unified mechanism based on the 
automated theorem proving method of analytic tableaux 
(Hähnle 2001). This single unifying principle, based on the 
idea of searching through spaces of possible worlds, 
enables these disparate mechanisms to be harmoniously 
combined in a single system. 
 In the remainder of this section, we provide an overview 
of simulation, hybrid reasoning and learning. More de-
tailed analysis and explanations may be found in our prior 
publications (Johnston and Williams 2007; 2008; 2009). 

Simulation 
In the Comirit framework, simulations are used as the 
underlying mechanism and representation for large scale 
commonsense knowledge. Not all knowledge can be 
represented efficiently in simulations (e.g., ‘What is the 
name of the Queen of England?’), but simulation works 
extremely well in problems governed by simple laws (such 
as physics) and so simulation is used in the framework 
wherever possible. 
 In the framework, simulations are a sophisticated gene-
ralization of an early proposal by Gardin and Meltzer 
(1989); extended to support 3D environments and non-
physical domains. Comirit simulations are constructed 
from a graph-based representation. The fundamental struc-
ture of a problem is first approximated by a (relatively) 
static graph. The graph is then annotated with frame-like 
structures, and simulation proceeds by the iterative update 
of the annotations by functions that perform update.  
 This representation is intentionally generic. We expect 
that it can be used to represent simulations from any rule-
driven problem domain including physical, social, legal, 
economic and purely abstract realms. To date, our research 
has emphasized physical reasoning and naïve physics, so 
we will illustrate simulation and learning through examples 
based upon 3D simulations used by physical models. 
 Consider a simple domestic robot facing a physical 
reasoning problem: given a mug filled with coffee, is it 
‘safe’ to perform fast movements to carry the mug? In the 
Comirit framework, the robot considers the problem by 
internal simulations of the scenario; testing whether a 
simulated mug is damaged by fast movement, or if such 
motion causes damage to the environment by spilling 
coffee. 
 The robot uses a generic graph structure is used to 
represent the underlying structure of the problem. For 
example, a mug of coffee can be approximated as a mesh 
of point masses connected by semi-rigid beams depicted in 
Figure 1. Examples of particular annotations and values 
that drive a simulation also appear in Figure 1. 
 Simulation proceeds by the iterative update of annota-
tion values. Newton’s laws of motion are applied to each 

of the point masses, and Hooke’s law (describing the 
behavior of a spring) is applied to the connecting beams. 
Figure 1 illustrates update functions for the laws of mo-
mentum and gravity. Note that these functions have only 
short-term and local effects. 
 The combined effect of iteratively computing local 
updates on the annotations is emergent behavior that close-
ly resembles the actual behavior of real world scenarios. 
Indeed, this method of simulation may be seen as a varia-
tion on the Euler method of numerical integration. Analy-
sis of the outcome of a simulation is performed by simple 
inspection primitives that test the state of simulation to 
determine if, for example, any semi-rigid bars have broken 
(in the case of a ‘broken’ symbol), or if any liquid is no 
longer contained by the mug (in the case of a ‘mess’ sym-
bol). 

Simulation + Reasoning 
Recalling that simulation only supports a ‘forward chain-
ing’ inference mode, we integrate simulation with logical 
deduction in a hybrid architecture in order to combine the 
strengths and complement the weaknesses of each mechan-
ism. That is, we use the deductive power of a general-
purpose logic to make up for the inflexibility of simulation. 
 In combining simulation and logic, our experiences are 
that the conceptual mismatch between simulation and logic 
prevents the application of traditional integration tech-
niques such as blackboard architectures. Our attempts 
invariably resulted in systems that were unworkably com-
plex and difficult to maintain. Instead, we sought a clear 
and unifying abstraction to harmonize the semantics of the 
reasoning mechanisms; by interpreting both simulation and 
logical deduction as operations that manipulate spaces of 
possible worlds. 

Figure 1: Examples of the components of a simulation 
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 The method of analytic tableaux (Hähnle 2001) is an 
efficient method of mechanizing logical theorem proving. 
Analytic tableaux have been successfully applied to large 
problems on the semantic web, and there is a vast body of 
literature on their efficient implementation (ibid.). The 
method constructs trees (tableaux) through the syntactic 
decomposition of logical expressions, and then eliminates 
branches of the tree that contain contradictions among the 
decomposed atomic formulae. Each branch of the resultant 
tableau may be seen as a partial, disjunction-free descrip-
tion of a model for the input formulae. The crucial insight 
is that if a tableau algorithm is given knowledge of the 
world and a query as logical input, then the conjunction of 
the atomic formulae along a branch of the resultant tree 
represents a space of worlds that satisfy the query. 
 The tableau method and simulation can thereby be 
unified through this common abstraction. The tableau 
algorithm generates spaces of worlds, and simulation 
expands upon knowledge of spaces of worlds (i.e., forward 
chains to future states based on current states). 
 In our framework, we perform commonsense reasoning 
by generalizing the tableau so that it can contain non-
logical terms such as simulations, functions and data-
structures in addition to the standard logical terms of 
traditional tableaux. Integration is achieved by mapping the 
mechanisms of diverse reasoning modes onto the tableau 
operators for expansion, branching and closing of 
branches. Traditional logical tableau rules map without 
change, and simulation is treated as an expansion operator. 
 To illustrate this mechanism, consider the following 
scenario: 

A household robot needs to move an object across a ta-
ble. Its actuators can perform a soft or a hard move-
ment. It is unsafe to move any object ‘quickly’. What 
commands may be sent to the actuators? 

For the convenience of our example calculations, let us 
assume that the mass of the object is 1kg, the soft force is 

1N, the hard force is 2N, the object is simply pushed for 1s 
and unsafe speeds are 1.5ms-1 or higher. Furthermore, we 
assume the following highly simplified and abstracted 
simulation (while simplified, this simulation has the cha-
racteristic properties of being numerical, fully specified 
and only operating in a ‘forward direction’): 
function simulate(Mass, Force, Time): 
 set Speed := Time * Force / Mass 
 return {speed = Speed} 

We can then convert the scenario to a logical form: 
time=1 ˄ mass=1 ˄ safe ˄ 
 (command=hard-force ˅ command=soft-force) 

With this logical form, we may then apply the method of 
analytic tableau and simulation to find models that satisfy 
the formula. The algorithm proceeds in the steps illustrated 
in Figures 2a–2d, terminating with only one open branch. 
Reading atomic formulae along that remaining branch, we 
see that it describes a world in which the action, com-
mand=soft-force is applied and the object moves safely at 
1ms-1. 
 Thus, we have used both simulation and logical deduc-
tion in a single mechanism to solve a (simplified) com-
monsense reasoning problem. In our prototypes, we incor-
porate a range of optimizations and special techniques: rule 
selection heuristics, rule for meta-reasoning, indexes, and 
unbound Prolog-style output variables. 

Simulation + Reasoning + Learning 
Of course, an intelligent system is of limited use if it has 
neither knowledge nor experience. While our expectation 
is that the acquisition of knowledge will be partially sup-
ported by manual engineering, our plan is that the system 
will autonomously acquire knowledge through observation 
of (and interaction with) the world. 
 A key advantage of simulations is that they are easily 
constructed and configured from observations. For exam-

Figure 2a: First, each conjunct in the 
original query is expanded into 

separate nodes. 
Figure 2b: The term ‘safe’ is expanded per its definition. 

Figure 2c: The tableau is forked into two branches: one branch for each disjunct 
in the fifth node. ‘Hard-force’ and ‘soft-force’ are then expanded per their 
definitions. Logical deduction has now stalled: no more logical rules apply. Figure 2d: Simulation is now invoked. As a result, the left branch becomes 

inconsistent (speed = 2 and speed < 1.5). The branch remains open and 
therefore describes a scenario satisfying the original query (i.e., the robot 

can safely use soft-force). 
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ple, given the ability to sense an object’s 3D shape (such as 
by stereographic cameras, laser scanners or time-of-flight 
cameras), an accurate simulation can be built from just two 
or three observations (Johnston and Williams 2009). The 
3D structure is scanned directly to create a graph approxi-
mation of the object, and visual observations of behavior 
are used to assign values to the annotations on the graph. 
Contrary to intuitions, a single pair of visual observations 
is sufficient to achieve significant accuracy: each pixel in 
an image is a separate data-point, so that two images may 
provides many thousands of training samples for learning 
the precise parameters of a simulation. 
 In Comirit, machine learning is implemented by map-
ping hypotheses generation and selection onto the tableaux 
reasoning rules. Generating hypotheses is akin to the 
disjunctive branching of the tableau, and the evaluation of 
hypotheses and subsequent discard of poor hypotheses is 
akin to closing branches in a tableau due to inconsistency. 
 This is achieved by introducing an (incomplete) ordering 
over branches, and then modifying the tableau algorithm so 
that it searches for minimal models. A branch in a tableau 
is no longer considered ‘open’ simply if it is consistent per 
the traditional tableaux algorithm: it is open if it is either 
consistent and unordered, or else it has an ordering and is 
minimal among all other consistent and ordered branches. 
That is, the algorithm considers all unordered branches, 
and only one ordered branch. 
 We define the ordering over branches using symbols that 
are stored within the tableau. The set of propositions mi-
nimize(VariableName, Priority) are assumed to be 

tautologically true in any logical context, but are used for 
evaluating the order of the branches. The Priority is a 
value from a totally-ordered set (such as the integers) and 
indicates the order in which the values of variables are 
sorted: branches are first sorted by the highest priority 
variable, then equal values are sorted using the next highest 
priority variable, and so on. 
 Consider our household robot example again. If the 
robot encounters a novel object (say, a ball) it can then use 
a stochastic hill-climbing strategy on its observations of the 
object in order to build an accurate simulation of the ob-
ject, as depicted in Figure 3: 

Step 1: The tableau initially contains the first observa-
tion of a ball and the initial hypothesis generated 
(many other control objects, meshes, functions and 
other data will be in the tableau, but these are not 
shown for simplicity). 

Step 2: The system observes movement in the ball. It 
generates new hypotheses by random perturbation, 
seeking to find a hypothesis with minimal error. 

Step 3: The system simulates from hypothesis0. The re-
sult of the simulation is compared with observation1 
to determine the error in the hypothesis. The right 
branch has smaller error so the left branch is no longer 
open. 

Step 4: As with Step 2, the system observes more 
movement and generates new randomly perturbed hy-
potheses, further refining the current hypothesis. 

Step 5: The system then continues as with Step 3, but 
this time the left branch is minimal. In the following 
steps, the algorithm continues yet again with more 
new observations and further hypothesizing… 

Note also that because our tableaux can contain logic, 
simulations and functions, the system may use logical 
constraints or ad-hoc ‘helper functions’ even when search-
ing for values in a simulation (e.g., a constraint such as 
mass > 0, or a custom hypothesis generator that samples 
the problem space in order to produce better hypotheses). 

Directed Learning 
In our work to-date (as illustrated above), learning is 
performed as a passive activity of observation and belief 
update. The system, in a background process, constantly 
anticipates future outcomes and compares expectations 
against observations to update internal simulations. How-
ever, passive observation is clearly not sufficient for a 
general purpose system: an object at a stable equilibrium 
does not yield useful data for learning. In order to build 
accurate simulations, the system must observe the dynamic 
properties of objects. That is, a system must actively en-
gage with the environment in order to construct accurate 
models of the environment. 
 Consider a domestic robot facing the typical home in 
which virtually every object lies at rest, in static equili-

Figure 3: Examples of the components of a simulation
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brium. It is not reasonable to expect that every new object 
must be taught to the system (not only is there the vast 
range of products that may be bought by an occupant, but 
also the possibility of entirely home-made objects). In-
stead, the robot needs to independently learn how to safely 
interact with any object. 
 A number of factors complicate learning in such envi-
ronments: the most informative action is likely to be de-
structive (e.g., one way to determine whether a glass is 
fragile would be throw it at the wall), and yet there does 
not appear to be a single set of informative actions that can 
be performed on all objects (consider the different forms of 
safe interaction for a ‘house of cards’, a glass of liquid and 
a large cardboard box). 

Hypothesis Generation 
In Figure 3, we used a simple two-element hypothesis to 
illustrate learning the properties of a ball. In practice, the 
hypothesis is a large vector of numerical and non-
numerical parameters that corresponds to the full set of 
annotations of an object’s simulation. Several iterations of 
the greedy stochastic search are applied for each observa-
tion, allowing fast learning and convergence on these large 
vectors. 
 In fact, we previously proposed that the hypothesis 
space of the learning algorithm should include a large Self-
Organizing Map (SOM) (Kohonen 1998) of background 
knowledge of all objects it has encountered. The SOM 
helps the system generalize its knowledge, because similar 
values cluster around each other in the map: resulting in 
faster learning, and better initial hypotheses about new 
objects. 
 Put simply, a self-organizing map is an auto-associative 
neural network formed from a 2D grid (or map) of vectors. 
A training vector is ‘learnt’ by the network by searching 
for the most similar vector presently in the network (the 
‘winner’), and then adjusting the values of that vector (and 
the other nearby vectors on the map) to be closer to those 
of the training vector. The rate of learning is a parameter of 
time: initially, each training sample initially results in a 
large adjustment of the ‘winner’ and its neighboring vec-
tors, but as the model converges diminishing updates are 
applied over a diminishing neighborhood. 
 When a new object (in stasis) is first encountered, the 
system will be able to directly observe superficial proper-
ties: its size, its color and texture, its visual similarity to 
other familiar objects, and whether the object appears to be 
intricately constructed or appears simply as solid block of 
matter. The system should use this external knowledge as 
cues to guessing safe behaviors. For example, a shiny 
‘metallic’ cup is likely to be far more robust than a fine 
porcelain tea-cup embossed with intricate patterns. The 
self-organizing map can make use of the visually observed 
properties by including visual attributes on the training and 
model vectors. When a novel object is first encountered, 

the map is searched for a vector whose immediately ob-
servable values most closely match the new observation: 
that ‘partial winner’ can then be used to provide a good 
initial hypothesis for the unobservable parameters that 
must be learnt. Given this initial hypothesis, simulations 
can then be run to evaluate the range of possible actions 
that may be performed; and select an action that will lead 
to more learning or an external reward. 
 More formally, the ‘partial winner’ of an input vector v 
is chosen as the vector x from the set of model vectors M 
in the SOM as given by: 
argmin
௫אெ

ԡሺݒ െ  ԡܨሻݔ

where F is the diagonal matrix diag(c1, c2, …, cn) such 
that ci is equal to 1 if the ith element of the vector is di-
rectly observable and 0 otherwise. 

Note that the computation of error in selecting a ‘partial 
winner’ may also be measured using non-Euclidian and 
weighted metrics as appropriate for a given problem do-
main. 

Conservative Reasoning 
A risk of selecting the single hypothesis that is the ‘partial 
winner’ in a self-organizing map is that appearances can be 
deceptive. For example, it is difficult to distinguish be-
tween: a hot skillet versus a cold skillet; a mould of unset 
Jell-O versus set Jell-O; and a cardboard box of fragile 
objects versus solid objects. We prefer a robot to act con-
servatively until it is certain that it can act safely. 
 So, while the direct selection of a ‘partial winner’ pro-
vides for excellent initial hypotheses (Johnston and Wil-
liams 2009), these hypotheses represent the ‘best guess’ 
rather than a ‘most conservative guess’ of the object’s 
behavior. Instead, we propose that the robot encountering 
an unknown object in stasis should sample plausible hypo-
theses, and defensively presume the worst outcome.  
 Thus we propose extending the initial hypothesis, so that 
it is not a single ‘partial winner’, but a set of the top-N 
‘partial winners’. 
 That is, the initial hypothesis for an observation v, is 
given by a set of N vectors X of such that, |ܺ| ൌ ܰ and is 
subject to: 
max
௫א௑

ԡሺݒ െ ԡܨሻݔ ൑ min
௫אெି௑

ԡሺݒ െ  ԡܨሻݔ
Each vector in this set of ‘partial winners’ is used to instan-
tiate separate simulations that together sample the full 
spectrum of likely effects of action on the object. A con-
servatively safe action is one that has the best possible 
worst-case behavior. If the robot’s hypothesis of a card-
board box contains N vectors, where simulation with some 
vectors suggests that the cardboard box is solid and robust, 
while other vectors that suggest that the object may be 
fragile; then the robot will select the gentle action that has 
the best worst-case behavior. 
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Learning-oriented Activity 
While we have promoted the selection of activities based 
on optimal worst-case performance, this is not the only 
option available to a system. For example, if an agent’s 
goal is simply information gain; then actions may be 
chosen based upon their ability to maximally discriminate 
between the vectors in an initial hypothesis. 
 We would suggest, however, that while this approach 
may maximize the rate of learning and may be ideal for an 
‘infant robot’ in a controlled environment, it is not likely to 
be suitable in real-world contexts. Smashing an object 
against a wall can be highly informative, even though it is 
unproductive. Indeed, such action is not even necessary, 
since good simulations can be learnt with very few obser-
vations. 
 We would suggest that an agent with a well-trained self-
organizing map does not need to perform significant active 
learning upon encountering a new object. The greatest 
uncertainty lies only with objects at rest in static equili-
brium. Sampling the SOM to select a conservative action is 
sufficient for initial interactions, and the result of this 
action will generate new observations for rapid learning 
and model refinement. 

Thus, we view active learning as principally a process of 
selecting a safe initial interaction. A top-N set of ‘partial 
winners’ should be used to select a best worst-case action 
on an unknown object, and then the standard ‘winner’-
takes all strategy of a SOM is used for subsequent observa-
tions, behavior-generation and learning for that object. 
More sophisticated learning in highly uncertain, dynamic 
or dangerous environments can proceed by sampling (and 
updating) a top-N set of ‘partial winners’ with subsequent 
decay in the size, N, of that set. 

Goal-Directed Activity 
Integration of passive learning into the Comirit framework 
uses minimize terms. While these terms were intended 
to allow the selection of cases (or models) that contained 
the best hypotheses, the same mechanism finds application 
in reward-directed activity selection. Where learning is a 
process of postulating models of the world and discarding 
those models with poor match to the observed world; goal 
directed behavior can be similarly modeled in Comirit by 
considering each action in a separate case (or tableau 
branch) and discarding those cases with sub-optimal ex-
pected return. 
 That is, goal-directed activity is modeled in Comirit by: 
instantiating the set of possible actions as separate cases; 
instantiating minimize(VariableName, Priority) terms; 
setting corresponding variables with the negation of the 
expected reward. The tableaux algorithm will automatical-
ly close minimum valued (i.e., maximal reward) branches. 
When only one branch remains and that branch contains an 

action, the robot (or software agent) then executes the 
action. 

Conclusion and Future Work 
In this paper we have described how mechanisms for 
passive learning are readily adopted to: performing con-
servative actions in an uncertain environment; and goal-
directed activity. These ideas are preliminary—they de-
scribe work in progress which has not been fully tested—
and so we view this work as an ‘extended position state-
ment’. 
 We are presently developing the framework on the 
Hykim robot bear (see Figure 4). The robot runs the De-
bian operating on an Intel-compatible PC, it has 21 degrees 
of freedom, and a range of sensors including a high-
resolution web-camera (mounted in the snout) and a WiFi 
network adapter. Our ambition is to create a robot with 
innate curiosity and a sense of play: it will explore its own 
environment to discover and learn about everyday objects, 
and apply the knowledge that it learns towards solving 
problems. It will use the multi-representational framework 
described in this paper to learn arbitrary physical and non-
physical systems, and then use its understanding of those 
objects to act towards its goals. Our long term view is for 
robot systems that perform large scale autonomous acquisi-
tion of commonsense knowledge, that can perform in any 
environment, and that serve as a platform for exploring 
deep questions of embodiment and symbol grounding. 
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Figure 4: The Hykim robot bear. 
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