
558



559



560



561



562



A simple approach to building a queue would be to insert a task into a database table 
during from one process (e.g., after upload).
Then, have a separate process scan the table looking for entries, deleting from the 
table whenever it completes a job.

If there is a sudden rush of new items added to the table, then they will just queue up 
and the other process will gradually work through the backlog one-by-one.

563



In computer programming synchronous means that your code is executed within the 
ordinary flow of control.

Asynchronous means that your code is executed outside the ordinary flow of control.
Control might be returned immediately.
The code will run at a later time, on a different thread.

Message driven beans are one way that this can be achieved in Java EE.

564



In this code, a connection to Java Message Service (JMS) is obtained, a session 
created and a message delivered to a queue.

565



Java EE will deliver the messages to the message driven bean, as the messages arrive.

In the previous slide, the queue was injected like this:
@Resource(lookup="jms/aip")
private Queue queue;

This message driven bean listens to the same queue:
@MessageDriven(mappedName = "jms/aip")

Note, though that the queue also needs to be configured in your application server 
administration.

566



Durability: Once accepted, a message will not get lost when the Java EE server stops 
or loses power suddenly. It is only removed from the queues once it has been 
successfully processed.
Message redelivery: If the message driven bean fails during processing, the container 
will retry delivery so that the message driven bean can try again.
Message queuing: If the message processing is too slow, the messages will queue up 
until the message driven bean(s) are able to process it.

567



568



In ordinary Java code, you might use threads when you want to execute two (or 
more) things at once.

In Java EE, you must not use threads.

The quote in the slide comes from Section 16.2.2 of the EJB specification.

569



For information about Asynchronous methods, see this Wikipedia article:
http://en.wikipedia.org/wiki/Asynchronous_method_invocation

In Java EE, when you call a method that has been annotated with Asynchronous, it 
will return immediately.
However, the method will continue running in a separate thread.

Normally if you call a synchronous method, control does not return until that method 
is complete.
An asynchronous method will return immediately and it will continue processing 
separately.

570



Suppose you have some ordinary (synchronous) Java code.

Each call to getStatus contacts a remote server and takes 5 seconds.

There are four servers, so executing them one-by-one will therefore take 20 seconds 
in total.

This would be a perfect situation for using threads.
You can't use threads in Java EE, so we use @Asynchronous.
However, in this case, we need to get the result.
So to do this we use futures…

571



…. a future is a "promise" to return a value at a future time.

https://en.wikipedia.org/wiki/Futures_and_promises

In this code, we get four promises the getStatus methods.
The method returns immediately but it doesn't return the real value.
Instead, it returns a "promise" to deliver a value in the future.
The promise is of type Future<String>, so this means that when we call .get() on the 
promise, it will return a String.

Calling each of the getStatus methods will cause four separate threads to start, each 
of them contacting the remote server.

Calling .get() on the Future will cause the code to block, awaiting the result from the 
thread that has been launched.

This code will get to the first .get() almost instantaneously.

572



The code will then block while f1.get() waits for the remote server to response (5 
seconds).
Since five seconds has elapsed at that line of code, the other servers should also have 
responded in the meantime.
This means that the remaining calls to f2.get(), f3.get() and f4.get() should be almost 
instantaneous.

Thus, the total execution time is just 5 seconds.
Previously it was 20 seconds, so we've saved 15 seconds in total (note, however, that 
this caused 4 separate threads to be launched).

572



This code is what it looks like to get an asynchronous method to return a value.
That is, this code shows how to return a future.

A Future<> object is returned immediately, but the function continues to run 
separately.

The client can keep checking if the result is available (using Future.isDone()), or it can 
block until the task is complete (Future.get()).
That is, it can do some other work while waiting for the EJB to calculate the result.

See the following for further details:
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Future.html
http://tomee.apache.org/examples-trunk/async-methods/README.html
http://docs.oracle.com/javaee/7/tutorial/doc/ejb-async001.htm

573



The Java EE specifications are gradually adding more-and-more support for 
asynchrony and non-blocking I/O.

In the example shown in the slide, we might have a web site that makes use of two 
external web services using JAX-RS.

This is what the synchronous code would look like:

Client client = ClientBuilder.newClient();
A a = client.target("http://example.com/a")

.request()

.get(A.class);

B b = client.target("http://example.com/b")
.request()
.get(B.class);

Suppose that each request takes 10 seconds.

574



The entire operation will then take 20 seconds (it does one, then the other).

If, instead, we use the asynchronous mode of the JAX-RS client, then the request 
returns an instance of Future.
The JAX-RS client will handle the request asynchronously, allowing other processing 
to be done in the mean time.

So, in the example of the slides, we will get af immediately and then also get bf 
immediately.
When we call af.get(), the Future will block for 10 seconds while the operation is 
processed.

When we call bf.get(), the second response will already have been processed 
asynchronously for 10 seconds. So bf.get() should return more-or-less immediately.

Thus, the total amount of time taken to perform both operations is likely to be on the 
order of 10 seconds (i.e., half the time of performing the two operations 
synchronously).

574



575



576



Messaging decouples invocation from execution.
A client can send a message. It is queued by Java EE (i.e., JMS middleware). The 
message driven bean that processes the message can access the information at its 
own rate.

The queue will survive shutdown.
In fact, it is possible to send messages even if the components are incomplete. 
Messaging makes it possible for the following hypothetical scenario to occure:
1. Write a client (but not the message driven bean)
2. Send a message (it gets queued up)
3. Shutdown GlassFish
4. Restart GlassFish
5. Write the message driven bean
6. Delete the client
7. Redeploy the application
8. The queued message will then be delivered to the message driven bean
9. If the message-driven bean fails, delivery will be reattempted until it succeeds.

577



This kind of technology can be very effective in large systems.
When systems are decoupled through messaging, the failure of one system does not 
affect the failure of another system.
For example, if the billing system is down, the website should still keep working.

As an aside: message oriented programming is also very effective in robotics. This is 
because robots are very prone to failure. If something fails, you don't want the entire 
robot to stop. If something is running slow, you don't want the entire robot to slow 
down.

577



This is an abbreviated version of the Future interface.
It allows you to check on the status of an asynchronous task, get the result and wait 
for a result.

578



579



580



581



There are a number of hosting options.
Some provide managed hosting where you can upload a WAR/EAR file.
Others provide a more basic computer-by-the-hour service.

Here's how you might use Amazon's EC2:
1. Log into the Amazon Web Services Console and enter the EC2 section
2. Launch a new instance
3. Get a security key (private key)
4. Convert the key to a format usable by Putty (only needed under Windows)
5. SSH into the new server
6. Follow the steps here:

https://www.digitalocean.com/community/tutorials/how-to-install-glassfish-4-0-
on-ubuntu-12-04-3

7. Go back to the Amazon Console and enable port 8080 on the Firewall

The entire process can be done in less than 10 minutes (though, it will take longer the 
first time you do it).

GlassFish can be reconfigured to host directly on port 80. It is also possible to use a 

582



reverse-proxy such as Nginx as a front-end.

582



583



While a database on a single computer may be appropriate for small websites, 
eventually a system with enough users will need a database running on multiple 
computers.

Ideally, a distributed system will:
- Remain consistent: it will work just like a single system
- Have high availability: it should keep working even if parts of the system fail
- Be able to keep working or remain consistent, even if the network splits in two 

(e.g., if you have 10 computers in Australia and 10 in the USA, it should still keep 
working even if the connection between Australian and USA stopped working)

An easy way to ensure consistency and partition tolerance is to just have one 
computer. However, if that one computer crashes, it will no longer remain available.

Conversely, an easy way to ensure availability, is to run the same database on 
multiple computers and perform the same operations on every computer. If any 
computer crashes, you can keep communicating with the other databases. However, 
this may result in inconsistencies if the same update isn't sent to every machine.

584



Is it possible to have all three at once?

In 2002, the "CAP theorem" was proven:
http://en.wikipedia.org/wiki/CAP_theorem

The CAP theorem says that you can't have all three. You can only choose two.

584



SQL databases have traditionally prioritized consistency.
NoSQL databases have, instead, focused on performance and availability at the price 
of consistency.

In recent years, there have been a range of technologies that 'embrace' failure.

Many of these databases are either key-value stores or document-based stores. 
They're designed for use in web development and so often have JavaScript-based 
representations, protocols and/or data-types.

Hadoop and Spark probably shouldn't be on this list… but they are examples of other 
systems that embrace failure. They aren't database systems but they're designed for 
robust, high speed computation. A large computation is spread over a network. If 
something fails, the system automatically recovers and re-does the computation on 
another node.

585



586



Recall the MVC architecture from the Week 3 lecture. If you can't explain how the 
MVC framework relates to JavaServer Faces, I encourage you to revisit the lecture.

587



There are two approaches to MVC architectures.

JavaServer Faces uses a component-based architecture. This is a very powerful 
approach. It attempts to simulate traditional application development when creating 
websites. It uses powerful components that are responsible for generating user 
interface and processing the input. This power and complexity makes it possible to 
create highly functional websites in little time. However, the downside is that the 
complexity can be difficult to use, especially when something goes wrong.

Action-based frameworks, in contrast, emphasize simplicity. An incoming request is 
mapped to an action and then that action is responsible for doing all processing and 
selecting an appropriate view. 

We covered JSF during this course because JSF is recommended by the Java EE 
specifications.
In current practice, Spring is more widely used than JSF.
With the official endorsement of JSF, it is likely to grow in popularity in future.
In addition, there is the expectation that Java EE 8 will incorporate a new MVC 

588



framework that is likely to be more close to Spring and so in the very long term, I 
anticipate that they will grow in popularity and Spring will slowly decline.

In any case, JSF is perhaps one of the most difficult MVC frameworks. If you 
understand how to use JSF and JAX-RS, you will not have any difficulty picking up 
Spring or any other Java-based MVC framework.

588



Action-based MVC frameworks typically follow the four steps listed in the slide.

589



Spring is, at the current moment, perhaps the most popular MVC framework in Java.

The Model in Spring is exactly the same as the models we have been using in JSF.

590



The View in Spring is standard JSP with the JSTL (JavaServer Pages Standard Tag 
Library).
Spring also provides some additional tags. In the example above, we see a form:form, 
form:input and form:errors that work similar to h:form, h:inputText and h:messages 
in JSF.

591



The Spring controller is a Java class with annotations that handle configuration.

Note that the Spring controller is similar to JAX-RS in that annotations are used to 
define the path.
The model is passed in as a parameter, and the action/controller sets properties of 
the controller to use in the view.
The view is selected by the return values of the action.
Spring will map the view name into a JSP page and then view will be rendered with 
the model.

592



Play is an up-and-coming MVC framework that is perhaps even simpler.

In Play, the actions of methods are handled using static methods.

593



The mapping between URLs and the controllers/actions is not achieved with 
annotations. Instead a route mapping file is used to configure the mappings.

594



Play uses its own view language (based on the Scala programming language). 
However, the general principles are the same as in JSP. There are special escapes to 
insert values from the model.

Note that the first line of the view defines the data-type of the model that gets 
rendered. This allows for "strong" typing, even in the view.

595



ReXSL is not a major MVC framework (to my knowledge). However, it has an 
interesting approach and it is one alternative that comes up when you search for Java 
MVC frameworks.

The basic idea of ReXSL is to use JAX-RS for the model and controller. ReXSL uses JAX-
RS to generate an XML representation of the resulting data. This is then transformed 
into a user-friendly HTML document by processing the XML document with an XSL 
stylesheet.

596



So… in ReXSL, you would use a standard JAX-RS implementation of a RESTful web 
service / resource.

597



Then ReXSL would transform the XML output of the JAX-RS API into a HTML 
document.
The view language is XSL / XSLT (eXtensible Stylesheet Language / XSL 
Transformations).
The view in the slide renders a HTML document and extracts the fullname from the 
XML document returned by JAX-RS.

598



A new MVC framework is planned for Java EE 8.
The details of it are not yet available.
However, it is expected that it will be based on JAX-RS.
This means that we might expect a controller to look something like a JAX-RS 
resource.

599



600



-- http://www.nngroup.com/articles/website-response-times/

The most important feature of an application is that it works.
If an application becomes unusable as soon as it has more than a few users, it isn't 
going to be very successful.

601



So, what are some strategies for dealing with many users at once?

The first, and easiest, step would be to buy a faster server. This is a perfectly 
legitimate approach.
You might also install reverse proxies and caches to bypass content generation for 
normally static (or slow changing) pages.
You could also install additional servers.

However, if scalability is an objective then it is important to also minimize overheads.

602



In minimizing overheads, our objective is to eliminate the things that can slow down 
our server.

603



This table comes from the book Enterprise and the Cloud by Brendan Gregg.

It provides a dramatic demonstration of two things:
1. The phenomenal power of a modern CPU
2. How much time is wasted waiting on disk drives, waiting on network 

communication and even just waiting on main memory.

Asynchronous processing is a way to better manage waiting.

604



There are two main features for asynchronous processing in Java EE.

We have already seen container managed asynchrony before. This is where we allow 
the application server to automatically deal with asynchronous processing. The 
container will start and manage separate threads for us.

Non-blocking I/O is a technology available to Servlets (and other parts of the Java, 
such as the filesystem) that enables concurrently requests to be processed 
synchronously.

605



To use asynchrony in servlets, just add asyncSupported = true to the @WebServlet
annotation.

Then, to switch the request to asynch mode, you call request.startAsync();

The AsyncContext that is returned can be used in other threads, queued up or 
otherwise used later.

606



Once you have an async context you can access it at a later time (perhaps from 
another thread).

When the response is complete, you communicate it to the server by calling 
context.complete();

607



The previous example makes sense if you don't have the response data immediately 
available.

Another possibility is that the request data is not immediately available (or may be 
very large).
You can configure the Servlet container so that it doesn't block waiting for data from 
the client.
Instead, you can use call backs. The container will call methods of the ReadListener
when data is available, rather than requiring that your code block waiting for the 
data.

This can be a more efficient use of threads. It may also be useful if you have other 
processing that could be done while waiting for the complete request from the client.

608


