Messaging

558



Scenario

Video format conversion is slow: so when should it be
performed?

559



Scenario

Video format conversion is slow: so when should it be
performed?

+ Before playback

* Problem: viewers will need to wait
* At the end of an upload

* Problem: uploader will need to wait

560



Scenario

Video format conversion is slow: so when should it be
performed?

+ Before playback
* Problem: viewers will need to wait
* At the end of an upload
* Problem: uploader will need to wait
* On a separate thread after upload
* Problem: lots of threads could slow down the server

561



Scenario

Video format conversionis slow: so when should it be
performed?

*» Before playback
* Problem: viewers will need to wait
* At the end of an upload
* Problem: uploader will need to wait
* On a separate thread after upload
* Problem: lots of threads could slow down the server
* Keep a queue of videos to convert

562



Queuing

woij a8l

Database Table

with Queued up —o-)
Videos

Video Conversion

Service

a|qel anané Ojul Jasu)

a|qey anan

A simple approach to building a queue would be to insert a task into a database table
during from one process (e.g., after upload).

Then, have a separate process scan the table looking for entries, deleting from the
table whenever it completes a job.

If there is a sudden rush of new items added to the table, then they will just queue up
and the other process will gradually work through the backlog one-by-one.

563



Asynchrony

Synchronous Asynchronous
(a method blocks until it (run separate from the
returns) main program flow)

In computer programming synchronous means that your code is executed within the
ordinary flow of control.

Asynchronous means that your code is executed outside the ordinary flow of control.
Control might be returned immediately.
The code will run at a later time, on a different thread.

Message driven beans are one way that this can be achieved in Java EE.

564



Sending

fResource (lookup="jms /AIPConnectionFactory")
private ConnectionFactory factory;

@Resource (lookup="jms/aip")
private Queue queue;

public void send() throws Exception {
// Set up
Connection conn = factory.createConnection() ;
Session sess = conn.createSession();
MessageProducer prod = sess.createProducer (queue) ;

// Send

TextMessage message = session.createTextMessage() ;
message.setText ("Hello!") ;

prod. send (message) ;

In this code, a connection to Java Message Service (JMS) is obtained, a session
created and a message delivered to a queue.

565



Message driven bean

EMessageDriven (mappedName = "jms/aip")
public class MyMDBean implements MessageListener {

@Override
public void onMessage (Message message) {
try {
String body = message.getBody(String.class) ;
System.out.println("Received: " + body) ;
} catch (JMSException e) {
// handle exception
}
}

Java EE will deliver the messages to the message driven bean, as the messages arrive.

In the previous

slide, the queue was injected like this:

@Resource(lookup="jms/aip")

private Queu
This message d

e queue;
riven bean listens to the same queue:

@MessageDriven(mappedName = "jms/aip")

Note, though that the queue also needs to be configured in your application server

administration.

566



Messaging

Behind the scenes, the application server provides:

* Durability

* Message redelivery

* Message queuing

* You can even send messages to beans that have not
been coded yet!

Message driven beans ‘temporally’ decouple a
request from its processing

Durability: Once accepted, a message will not get lost when the Java EE server stops
or loses power suddenly. It is only removed from the queues once it has been
successfully processed.

Message redelivery: If the message driven bean fails during processing, the container
will retry delivery so that the message driven bean can try again.

Message queuing: If the message processing is too slow, the messages will queue up
until the message driven bean(s) are able to process it.

567



568



Threading in EJBs

“The enterprise bean must not attempt
to manage threads. The enterprise bean
must not attempt to start, stop,
suspend, or resume a thread, or to
change a thread’s priority or name. The
enterprise bean must not attempt to
manage thread groups.”

“An enterprise bean must not use
thread synchronization primitives to
synchronize execution of multiple
instances, unless it is a singleton
session bean with bean-managed
concurrency.”

In ordinary Java code, you might use threads when you want to execute two (or
more) things at once.

In Java EE, you must not use threads.

The quote in the slide comes from Section 16.2.2 of the EJB specification.

569



Synchronous vs asynchronous

public void sendEmail () {
ff long, slow calculation

Sync }

EAsynchronous

publie woid sendEmail () {
Async // long, slow calculation

ff (but executed later)
}

For information about Asynchronous methods, see this Wikipedia article:
http://en.wikipedia.org/wiki/Asynchronous_method_invocation

In Java EE, when you call a method that has been annotated with Asynchronous, it
will return immediately.
However, the method will continue running in a separate thread.

Normally if you call a synchronous method, control does not return until that method
is complete.

An asynchronous method will return immediately and it will continue processing
separately.

570



Dealing with slow operations

String statusl = serverl.getStatus():; // 5 sec
String status? = server?.getStatus(); // 5 sec
String status3 = server3.getStatus(): // 5 sec
String statusd4 = serverd.getStatus(); // 5 sec

f/ total: 20 seconds

user.show(statusl, status?, statusld, statusd):

Suppose you have some ordinary (synchronous) Java code.
Each call to getStatus contacts a remote server and takes 5 seconds.

There are four servers, so executing them one-by-one will therefore take 20 seconds
in total.

This would be a perfect situation for using threads.

You can't use threads in Java EE, so we use @Asynchronous.
However, in this case, we need to get the result.

So to do this we use futures...

571



Dealing with slow operations

serverl.getStatus(); f// instantly
server? . getStatus(); // instantly
sarver3.getStatus(); // instantly
serverd.getStatus(); // instantly

Future<String> fl
Future<String> f£2
Future<String> f3
Future<String> f4

String statusl
String status2
String statusl
String status4

fl.get(): f/f 5 sec

£2.get(): // instantly
£f3.get(): // instantly
f4.get(); // instantly

J/ total: 5 seconds

user.show(statusl, status2, status3l, statusd);

... a future is a "promise" to return a value at a future time.

https://en.wikipedia.org/wiki/Futures_and_promises

In this code, we get four promises the getStatus methods.

The method returns immediately but it doesn't return the real value.

Instead, it returns a "promise" to deliver a value in the future.

The promise is of type Future<String>, so this means that when we call .get() on the
promise, it will return a String.

Calling each of the getStatus methods will cause four separate threads to start, each
of them contacting the remote server.

Calling .get() on the Future will cause the code to block, awaiting the result from the
thread that has been launched.

This code will get to the first .get() almost instantaneously.

572



The code will then block while f1.get() waits for the remote server to response (5
seconds).

Since five seconds has elapsed at that line of code, the other servers should also have
responded in the meantime.

This means that the remaining calls to f2.get(), f3.get() and f4.get() should be almost
instantaneous.

Thus, the total execution time is just 5 seconds.

Previously it was 20 seconds, so we've saved 15 seconds in total (note, however, that
this caused 4 separate threads to be launched).

572



Synchronous vs asynchronous

public String getStatus() {
/f get info from remote server
// takes 5 seconds

Sync .
return status;
}
BAsynchronous
public Future<String> getStatus() {
ff get info from remote server
ESFHC

return
new AsyncResult<String>(status)

This code is what it looks like to get an asynchronous method to return a value.
That is, this code shows how to return a future.

A Future<> object is returned immediately, but the function continues to run
separately.

The client can keep checking if the result is available (using Future.isDone()), or it can
block until the task is complete (Future.get()).
That is, it can do some other work while waiting for the EJB to calculate the result.

See the following for further details:
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Future.html
http://tomee.apache.org/examples-trunk/async-methods/README.html
http://docs.oracle.com/javaee/7/tutorial/doc/ejb-async001.htm

573



Asynchronous JAX-RS clients

Client client = ClientBuilder.newClient() ;
Future<A> af = client.target("http://example.com/a")
. request()

.async()
.get(A.class) ;

Future<B> bf = client.target("http://example.com/b")
.request()
.async()
.get(B.class) ;

A a = af.get():
B b = bf.get();

The Java EE specifications are gradually adding more-and-more support for
asynchrony and non-blocking 1/0.

In the example shown in the slide, we might have a web site that makes use of two
external web services using JAX-RS.

This is what the synchronous code would look like:

Client client = ClientBuilder.newClient();

A a = client.target("http://example.com/a")
.request()
.get(A.class);

B b = client.target("http://example.com/b")
.request()

.get(B.class);

Suppose that each request takes 10 seconds.

574



The entire operation will then take 20 seconds (it does one, then the other).

If, instead, we use the asynchronous mode of the JAX-RS client, then the request
returns an instance of Future.

The JAX-RS client will handle the request asynchronously, allowing other processing
to be done in the mean time.

So, in the example of the slides, we will get af immediately and then also get bf
immediately.

When we call af.get(), the Future will block for 10 seconds while the operation is
processed.

When we call bf.get(), the second response will already have been processed
asynchronously for 10 seconds. So bf.get() should return more-or-less immediately.

Thus, the total amount of time taken to perform both operations is likely to be on the
order of 10 seconds (i.e., half the time of performing the two operations
synchronously).

574



Key points

* Do not use threads or synchronized in an
Enterprise Java Bean

* Use @Asynchronous if you need concurrency (this
will return a Future which you can use to retrieve the
result)

* Many Java EE technologies are making increased
use of asynchronous methods and interfaces

575



Bonus slides

576



Message driven beans

Client / Sender Message Driven

Bean

aﬂess%u puas
aﬁessa* lanjaq

Messaging decouples invocation from execution.

A client can send a message. It is queued by Java EE (i.e., JMS middleware). The
message driven bean that processes the message can access the information at its
own rate.

The queue will survive shutdown.

In fact, it is possible to send messages even if the components are incomplete.
Messaging makes it possible for the following hypothetical scenario to occure:
Write a client (but not the message driven bean)

Send a message (it gets queued up)

Shutdown GlassFish

Restart GlassFish

Write the message driven bean

Delete the client

Redeploy the application

The queued message will then be delivered to the message driven bean

If the message-driven bean fails, delivery will be reattempted until it succeeds.

WRNOUREWNR

577



This kind of technology can be very effective in large systems.
When systems are decoupled through messaging, the failure of one system does not
affect the failure of another system.

For example, if the billing system is down, the website should still keep working.

As an aside: message oriented programming is also very effective in robotics. This is
because robots are very prone to failure. If something fails, you don't want the entire

robot to stop. If something is running slow, you don't want the entire robot to slow
down.

577



Future

public interface Future<Vv> {

// Attempt to cancel the task
boolean cancel (boolean mayInterruptIfRunning) ;

// Was the task cancelled before it completed?
boolean isCancelled() ;

// Is the task complete?
boolean isDone() ;

// Wait for the task to complete
V get() throws InterruptedException,
ExecutionException;

// Wait, up to a given duration, for the task to
complete
V get(long timeout, TimeUnit unit) throws ...;

This is an abbreviated version of the Future interface.

It allows you to check on the status of an asynchronous task, get the result and wait

for a result.

578



579



. Hgsﬂng

* NoSQL

* MVC and lightweight frameworks
* Asynchrony

580



581



Cloud service providers

laaS:

« EC2

* Google Compute Engine
* Windows Azure

* Ninefold

Paas:

* Google App Engine
* OpenShift

* Elastic Beanstalk
* Windows Azure

* Heroku

There are a number of hosting options.
Some provide managed hosting where you can upload a WAR/EAR file.
Others provide a more basic computer-by-the-hour service.

Here's how you might use Amazon's EC2:

Log into the Amazon Web Services Console and enter the EC2 section

Launch a new instance

Get a security key (private key)

Convert the key to a format usable by Putty (only needed under Windows)

SSH into the new server

Follow the steps here:
https://www.digitalocean.com/community/tutorials/how-to-install-glassfish-4-0-
on-ubuntu-12-04-3

7. Go back to the Amazon Console and enable port 8080 on the Firewall

ok wnNeE

The entire process can be done in less than 10 minutes (though, it will take longer the
first time you do it).

GlassFish can be reconfigured to host directly on port 80. It is also possible to use a

582



reverse-proxy such as Nginx as a front-end.

582



583



Choose any two

Consistency

Availability

Partition tolerance

While a database on a single computer may be appropriate for small websites,
eventually a system with enough users will need a database running on multiple
computers.

Ideally, a distributed system will:

- Remain consistent: it will work just like a single system

- Have high availability: it should keep working even if parts of the system fail

- Be able to keep working or remain consistent, even if the network splits in two
(e.g., if you have 10 computers in Australia and 10 in the USA, it should still keep
working even if the connection between Australian and USA stopped working)

An easy way to ensure consistency and partition tolerance is to just have one
computer. However, if that one computer crashes, it will no longer remain available.

Conversely, an easy way to ensure availability, is to run the same database on
multiple computers and perform the same operations on every computer. If any
computer crashes, you can keep communicating with the other databases. However,
this may result in inconsistencies if the same update isn't sent to every machine.

584



Is it possible to have all three at once?

In 2002, the "CAP theorem" was proven:
http://en.wikipedia.org/wiki/CAP_theorem

The CAP theorem says that you can't have all three. You can only choose two.

584



Embracing failure

There has been a changing attitude to computer
failure:

* Hadoop

* Spark

* CouchDB
* MongoDB
* Riak

« BigTable

* Cassandra

SQL databases have traditionally prioritized consistency.
NoSQL databases have, instead, focused on performance and availability at the price
of consistency.

In recent years, there have been a range of technologies that 'embrace’ failure.

Many of these databases are either key-value stores or document-based stores.
They're designed for use in web development and so often have JavaScript-based
representations, protocols and/or data-types.

Hadoop and Spark probably shouldn't be on this list... but they are examples of other
systems that embrace failure. They aren't database systems but they're designed for
robust, high speed computation. A large computation is spread over a network. If
something fails, the system automatically recovers and re-does the computation on
another node.

585



MVC frameworks

586



~ontroller

Model
WEVEREEET)

Recall the MVC architecture from the Week 3 lecture. If you can't explain how the
MVC framework relates to JavaServer Faces, | encourage you to revisit the lecture.

587



MVC frameworks

Component-Based Action-Based
(JavaServer Faces) (Spring, Java EE 8 MVC)

There are two approaches to MVC architectures.

JavaServer Faces uses a component-based architecture. This is a very powerful
approach. It attempts to simulate traditional application development when creating
websites. It uses powerful components that are responsible for generating user
interface and processing the input. This power and complexity makes it possible to
create highly functional websites in little time. However, the downside is that the
complexity can be difficult to use, especially when something goes wrong.

Action-based frameworks, in contrast, emphasize simplicity. An incoming request is
mapped to an action and then that action is responsible for doing all processing and
selecting an appropriate view.

We covered JSF during this course because JSF is recommended by the Java EE
specifications.

In current practice, Spring is more widely used than JSF.

With the official endorsement of JSF, it is likely to grow in popularity in future.
In addition, there is the expectation that Java EE 8 will incorporate a new MVC

588



framework that is likely to be more close to Spring and so in the very long term, |
anticipate that they will grow in popularity and Spring will slowly decline.

In any case, JSF is perhaps one of the most difficult MVC frameworks. If you

understand how to use JSF and JAX-RS, you will not have any difficulty picking up
Spring or any other Java-based MVC framework.

588



Action-based MVC frameworks

Map URL to method of controller (action)
Invoke action

Action returns model and view name

View is rendered using model as parameters

0o

Action-based MVC frameworks typically follow the four steps listed in the slide.

589



Spring model

package au.edu.uts.aip.spring;
import javax.validation.constraints.*;
public class Task {

private String title;
private String description;

@NotNull @Size(min = 1)
public Str goﬂ'u'.lo() {
return title

public void sotﬂ.tlo(suim title) {
) this.title = title

gNotNull gSize(min =
public Strinq tDosoription() {
return description;

public void setDescription(String description) {
this.description = description;

Spring is, at the current moment, perhaps the most popular MVC framework in Java.

The Model in Spring is exactly the same as the models we have been using in JSF.

590



The View in Spring is standard JSP with the JSTL (JavaServer Pages Standard Tag
Library).

Spring also provides some additional tags. In the example above, we see a form:form,
form:input and form:errors that work similar to h:form, h:inputText and h:messages

in JSF.

Spring view

?:};To-do List</hl>
u
<c:!<<>ﬁ;ch var="item" items="${items)">

<c:out value="§({item.title)"/>
</11§i><c:aut value="§ (item.description)"/></i>
</c: forEach>
</ul>
<£ou:§on action="create" commandName="task">
<label>Title:

<form:input path="title"/>
<form:errors path="title" cssClass="error"/>

</label>
</];>
<hbol>0.sczipt3m
<form:input path="description"/
<form:errors path="description" cssClass- exroxr" />
</label>
</
<p

<input type="submit" value="Add"/>
</form:form>

591



Spring controller

EController
publia class TodoListController {

private List<Task> tasks = new ArrayList<s():

thfu-:tlh ing("/flist"
p'l.b ia Str g ist md-.'l] {
ddAttribute("itams"™, tasks)

1 addhttribute(”task”, new Task()} :
raturn "list";

BindingResult result) 1'
if (result.hasErrors(}) {
model . addAttribute ("items", tasks);
aturn "list™;
} alsa |
tasks . add (task) ;
\ return "redirect:list”;
}

ER.-T:-:I:‘H.I ing (" /oreate")
public Bt:ﬂ create(Model modal, #Valid Task task,

The Spring controller is a Java class with annotations that handle configuration.

Note that the Spring controller is similar to JAX-RS in that annotations are used to

define the path.

The model is passed in as a parameter, and the action/controller sets properties of

the controller to use in the view.
The view is selected by the return values of the action.

Spring will map the view name into a JSP page and then view will be rendered with

the model.

592



Play controller

package controllers;

import play.®;
import play.mve.*;

public class Clients extends Controller {

public static Result show(int id) {
return ok({getClient(id)) ;
}

Play is an up-and-coming MVC framework that is perhaps even simpler.

In Play, the actions of methods are handled using static methods.

593



Play routes

GET /clients/:id controllers.Clients.show(id: Long)

The mapping between URLs and the controllers/actions is not achieved with
annotations. Instead a route mapping file is used to configure the mappings.

594



Play views

B{client: Cliant)
<hl>Welcome Rclient.name!</hl>

<ul>

Bfor (order <= client.getOrders()) {
<li»@order.getDescription()</li>

}

</ul>

Play uses its own view language (based on the Scala programming language).
However, the general principles are the same as in JSP. There are special escapes to
insert values from the model.

Note that the first line of the view defines the data-type of the model that gets
rendered. This allows for "strong" typing, even in the view.

595



ReXSL

* war

WL

RalSL Filver : .. 1ML Climme
¥ ; :
H CiaiLachi |'|';:-i 1 -
Cantrallar : - tr
JATKE rascurees | maESL Barvier
&

JidE M e

ReXSL is not a major MVC framework (to my knowledge). However, it has an
interesting approach and it is one alternative that comes up when you search for Java
MVC frameworks.

The basic idea of ReXSL is to use JAX-RS for the model and controller. ReXSL uses JAX-
RS to generate an XML representation of the resulting data. This is then transformed
into a user-friendly HTML document by processing the XML document with an XSL
stylesheet.

596



ReXSL

Path({"/")
public class MainResource {
BGET
public UserInfo front() {
return new UserInfo (getCurrentUser()) ;
}
}

So... in ReXSL, you would use a standard JAX-RS implementation of a RESTful web
service / resource.

597



ReXSL Userinfo.xsl

<xsl:stylesheet
xmlns:xsl="http:/ /www.w3.org/1999/XSL/Transform"
mlns="http://www.w3.orqg/1999/xhtml" wversion="1.0">
<xs]l:template match="/user">
<html xml:lang="en">
<body>
<p>
Welcome, <xsl:value-of name="fullname" />
</p>
</body>
</html>
</xsl:template>
<fxsl:stylesheat>

Then ReXSL would transform the XML output of the JAX-RS API into a HTML
document.

The view language is XSL / XSLT (eXtensible Stylesheet Language / XSL
Transformations).

The view in the slide renders a HTML document and extracts the fullname from the
XML document returned by JAX-RS.

598



Java EE 8 MVC?

@Path ("user")
public class UserController {

@GET
public Viewable get() ({
User user = getCurrentUser() ;
return new Viewable ("user_details", user);

}

A new MVC framework is planned for Java EE 8.
The details of it are not yet available.
However, it is expected that it will be based on JAX-RS.

This means that we might expect a controller to look something like a JAX-RS
resource.

599



600



Performance

“A snappy user experience
beats a glamorous one, for the
simple reason that people
engage more with a site when
they can move freely and focus
on the content instead of on
their endless wait.”

-- http://www.nngroup.com/articles/website-response-times/
The most important feature of an application is that it works.

If an application becomes unusable as soon as it has more than a few users, it isn't
going to be very successful.

601



C10K

How can we handle 10,000 simultaneous
connections?

* Minimize threads
* Minimize overheads
* Minimize state

So, what are some strategies for dealing with many users at once?

The first, and easiest, step would be to buy a faster server. This is a perfectly
legitimate approach.

You might also install reverse proxies and caches to bypass content generation for
normally static (or slow changing) pages.

You could also install additional servers.

However, if scalability is an objective then it is important to also minimize overheads.

602



Other performance factors

* Can we do multiple things at once?

* Does our whole process need to stall while waiting
on /0?7

In minimizing overheads, our objective is to eliminate the things that can slow down
our server.

603



1 CPU Cycle 03ns
Level 1 cache access 09ns
Level 2 cache access 28ns
Level 3 cache access 129ns
Main memory access (DRAM, from CPU) 120 ns
Solid-state disk I/0 (flash memory) 50-150 us
Rotational disk I/0 1-10 ms
Internet: San Francisco to New York 40 ms
Internet: San Francisco to United Kingdom 81ms
Internet: San Francisco to Australia 183 ms
TCP packet retransmit 13s
0S virtualization system reboot 4

SCSI command timeout 30s
Hardware (HW) virtualization system reboot 40s
Physical system reboot 5 min

1s

3s

9s

43s

6 min

2-6 days
1-12 months
4 years

8 years

19 years
105-317 years
423 years

3 millennia
4 millennia
32 millennia

This table comes from the book Enterprise and the Cloud by Brendan Gregg.

It provides a dramatic demonstration of two things:
1. The phenomenal power of a modern CPU

2. How much time is wasted waiting on disk drives, waiting on network

communication and even just waiting on main memory.

Asynchronous processing is a way to better manage waiting.

604



Asynchrony

Container Managed

Asynchrony Non-blocking 10

There are two main features for asynchronous processing in Java EE.

We have already seen container managed asynchrony before. This is where we allow
the application server to automatically deal with asynchronous processing. The
container will start and manage separate threads for us.

Non-blocking I/O is a technology available to Servlets (and other parts of the Java,
such as the filesystem) that enables concurrently requests to be processed
synchronously.

605



Asynchronous Serviets

EWebServliet (
urlPatterns = " /AsyncServlet”,
asyncSupported = trua)

public class AsyncServlet extends HttpServlet {

A0verride

protected void doGet(...) throws ... {
AsyncContext context = request.startAsync()
processor.addTofueue (context) ;

}

To use asynchrony in servlets, just add asyncSupported = true to the @WebServlet
annotation.

Then, to switch the request to asynch mode, you call request.startAsync();

The AsyncContext that is returned can be used in other threads, queued up or
otherwise used later.

606



Asynchronous Serviets

AsyncContext context = contexts.poll()

PrintWriter out = context.getResponse () .getWriter() ;
out.println("Hallo, World!"):

context.complete() ;

Once you have an async context you can access it at a later time (perhaps from
another thread).

When the response is complete, you communicate it to the server by calling
context.complete();

607



Asynchronous Serviets

fNebSexviet(
uxlhtutu - /umxuonht'
upported = true
Muc :u-. AsyncIOServiet extends HttpServiet (
fOverride
p:oucm void doPost(...) throws ... |

final AsyncConmtext context = request. staxtisync()
final Sexviet tStream in = context. ioumut() Ynxrtutsuou():
final SexvietOutputStream out = contex sponse Outputstrean() ;

in.setReadlistenss (new Readlistenex() |

fOvexride
public void onDataAvailable() throws I0Exception |
?y:o ] data = new wuuou]
nt lea:
while (in. 1-&@(& 66 (len = in read(data)) > 0) |
out write (data , den):

)
)
foverride

public void onAllDataRead () throws IOException |
context.complete()

fOverride
public void onError (Throwable t) {
Systes. out. println(“onkrrox”)

The previous example makes sense if you don't have the response data immediately
available.

Another possibility is that the request data is not immediately available (or may be
very large).

You can configure the Servlet container so that it doesn't block waiting for data from
the client.

Instead, you can use call backs. The container will call methods of the ReadListener
when data is available, rather than requiring that your code block waiting for the
data.

This can be a more efficient use of threads. It may also be useful if you have other

processing that could be done while waiting for the complete request from the client.

608



