Web services

441

REST APIs

Modern web applications and web sites are not "islands". They need to communicate
with each other and share information.

For example, when you develop a web application, you may need to do some of the
following:

Connect to a social network to authenticate a user

Connect to a social network to send a post/message on behalf of your users
Connect to a billing gateway to charge a credit card

Connect to a phone gateway to make or receive phone calls

Connect to a search engine to perform custom searches

Connect to a analysis service to transform or analyze images or sound
Connect to a video service to transform video

And so on...

Conversely, if you are providing a novel service or technology, or if your site managed
valuable data, other developers (or your users) may want to connect to your service.

Today, the typical way of exchanging information or allowing remote method calls is
via web services.

442

Twitter, for example, provides a rich API for checking statuses, searching, posting and
retrieving user timelines.

442

Bt Dt s Sr 0ot AP Versmn I
e
ong Using the Graph APY

Basics

Reading

Facebook provides an API to extract information from the Facebook social graph.

443

-
L WS -

Amason [tk Compute houd
T P I s Seah Documentaion T Gusde

S, e e b

Startinstances

Tarts n Amaien (B0 Bahad MM Tost rons ve o wvmmady dugpad
b G Wnpred wd Sated When o eelawe 5 dopped. T camg e

s o4 Ve ok e @y

et e e wh—r

worle
T 10 of the cednt

e wad wrwg

A Bot of Ptance ate hanges. Lah Bhange & wTimoed M an (nes shement

e Ealaccxitsted

Ond s 2age halp pous” T |

Amazon provides web services that allow you to automatically manage all of their
technologies. For example, you can use the Startinstances web service to
automatically launch a new web server on Amazon EC2.

444

Prodect Advertining APT [nget « g e 4
—t ot Poge halp yout e | e | Tl n shout &
[Sewscooumentaton | adabon el
B I i T] « e et
——

" et - S P
Abeameng

L e b

T

O st ey

- -
o e o P chard b et [g oG o by b o0 o o P harn S A ey Separ g o Pt eAee Fo W fad 0 P gt
* Somratiete By Selm. Dranloceg returme o0 R s MO Ssafectarnr. Prasectier, and Title of Bhe em

TLaalinh gy SEGTE M (SRS PULA LDy (N s M A€ AN O AT PRSI, (Ml Dem ST EL el PO PrBat
e It e b o RATA A B A mmages o peeBaTA B wrart wd U o s

1o M e P e B o b T Cop e Pre G et s by ot

Cammatty A akatetry
* Bestovhew A s hemean e e ot | et by .
oo

¢ e Cegpeent Patametery
e brpas e e
P teriee e Nem— Eas ol Sepired
“ Basperen Bamew Comees Sustition Spwcher a0 o s condition. I Condibon tet 15 A" & Meparate st of cespeneen & renamad b sach sukd N
R Wt of Coniitn, Tha Sulit subon o Wore " St B 50 1 vt Sommstl Soas nok et et ool
g B e be M A D s 0 o (T D o e ks o amet s et be set Ve
“vakatin, " Aazon ety weis e D ww Ve
Yrpe vy
Oefas trw

C e ve tece
P s Mt
© Pemdests et v

C e e
Porevater vl Vs Uved e tlhe Sehsteled o

B]

e et of R antinr e 10 Wk 49 44 B KB STy SRR ASTES PR B e D 16 bt Speiied W
X 0 Tpe g
* bnte

[y

VU Vet S | UPC | A R I orte e search inder i Bockil. UPC @ met vald I Bhe CA lcae

When B0 50 Lrue, SUBATE The SR By win B Revees B ~
Tope Boean

Oufol “ee

W Vs Tre | Paiew

The Amazon bookstore also comes with a comprehensive API.

445

e PROOUCTS PRIONG SOLUTIONS AP A DOCS ML

REST API: Making Calls NSRS

Moper | Seares

Tl Heloronce

HTTP POST to Calls

27004 01/ Accoumt s/ (Accoumts

POST Paramaters

Porarwtor Oescrgton

Twilio provides a web service for making and receiving telephone calls (and SMSes).

446

stripe ——

I ¢ Reforence

Stripe provides a credit card processing gateway.

447

Q P Paymeonts

Pin Payments API

Pin payments also provides a billing gateway.

448

Remote methods

449

Accessing remote services

Network protocols:
* RPC (Remote Procedure Call)
* RMI (Java Remote Method Invocation)

* CORBA (Common Object Request Broker
Architecture)

* RMI over IIOP (RMI over Internet Inter-ORB Protocol)

How can these websites to communicate with each other?

This is an old problem that goes back to the early days of computer networks: how
can code running on one computer take advantage of code running on another
computer?

One approach could be to use standard information exchange protocols of the
internet (e.g., email/SMTP or HTTP).

However, if we are building a distributed system, it may be preferable to use a
method invocation model that mimics our programming languages. That is, we would
like to be able to call a method on a remote computer as though it is running on the
same computer.

This idea is called a "remote procedure call" (RPC). The idea goes back to the 1980s.
Specialized network protocols were developed to help build 'distributed systems'.

http://en.wikipedia.org/wiki/Remote_procedure_call

In Java, remote procedure calls were first implemented using "RMI". RMl is an object-

450

oriented approach to remote procedure calls. It allows objects (not just methods) to
be accessed over a network. A special "stub" is used on the client: it is a local object
that acts like the remote object. It uses the network to communicate with the RMI
server. On the server, a "skeleton" receives requests from the client stub and passes
the request on to the "real" object. Any results are returned back to the client via the
skeleton and the stub.

CORBA is a complex standard for distributed systems. It is a cross-platform RPC/RMI
technology.

With the advent of CORBA, Java provided a version of RMI that is compatible with the
CORBA "Inter-ORB protocol". In fact, whenever you use a remote interface of an
Enterprise JavaBean, your EJB is compatible with CORBA.

All of these approaches used custom low-level protocols. They are complex but
generally efficient and quite powerful.

450

Challenges

+ Performance, efficiency and bandwidth

* Security

* Reliability

* Cross-platform and cross-language support
* References and garbage collection

* Naming and directory services

These are some of the problems faced by the creators of RPC technologies.
Developing solutions to these problems creates a lot of complexity.

RPC technologies try to hide the details of the network. However, the price of hiding
these challenges and details is complexity.

451

Web services

HTTP-based:

* XML-RPC (XML Remote Procedure Call)
» SOAP (Simple Object Access Protocol)

* REST (Representational State Transfer)

With the rise of the world-wide-web and the domination of HTTP as the most popular
protocol for accessing remote resources, RPC technology adapted to take advantage
of the HTTP protocol.

There are some advantages in using a HTTP-based protocol for creating remote

method calls:

* HTTP is simple and easy to implement

* The popularity of the web means that most programming languages already
support HTTP

* HTTP is often the easiest technology for bypassing corporate firewalls (everyone
needs HTTP to browse the web, so port 80 is unlikely to be blocked by a firewall) —
this means that accessing a web service does not require developers to get
through bureaucracy or corporate politics

* HTTP has established technologies and techniques for caching and load-balancing

* HTTP is well understood by developers

* HTTP can be tested using a web browser

In a sense, a HTTP-based approach does not try to hide the challenges of RPC. It
leaves the complexity to the developer to solve. Perhaps this isn't such a big problem

452

because ultimately networks do fail and no matter how sophisticated the underlying
RPC technology, there is no way to send data through a disconnected network cable.

Three main approaches to handling remote method calls over HTTP have arisen:

XML-RPC provides a classic RPC-style architecture and is a simple protocol that works.

It is based on sending and receiving simple XML documents.

SOAP (Simple Object Access Protocol) is also XML-based. However, despite its name,
it is a quite complex technology. It has "all the bells and whistles" and perhaps its
power has caused it to overshadow XML-RPC. That is, SOAP seems to have been
much more successful than XML-RPC.

REST is not a standardized technology. It is a set of conventions for treating remote
method invocations like requests for web pages. In REST, standard HTTP methods are
used to POST or GET XML or JSON content from a server. While REST lacks standards
and few frameworks or automatic tools, its simplicity seems to have driven rapid
adoption. Most new web services on the internet are using a RESTful architecture.

452

Remote services in Java EE

Remote Method Invocation
(EJB Remote Interfaces)

SOAP
(JAX-WS)

REST
(JAX-RS)

These are the three main approaches to creating and using web services in Java EE.

We will not cover RMI / EJB in this lecture, as we already covered it in previous
lectures.

To create a remote interface for an EJB, you simply add a @Remote interfaces to your
EJB.
JAX-WS is the Java technology for creating XML-based Web Services.

JAX-RS is the Java technology for creating XML-based (and JSON-based) RESTful Web
Services.

453

454

SOAP

Simple Object Access Protocol

* W3C specification

* XML-based protocol

Combines multiple technologies:

* XML and XML Schema, used for encoding all data

* HTTP, the transport protocol used for connections
(other transports are also allowed)

* SOAP, a one-way message exchange technology

» SOAP RPC, a uniform representation for RPC style
request/response messaging

* WSDL, a language to describe the interface

» UDDI, a protocol for accessing a registry of web
services

SOAP is a complex set of standards and specifications.

You can view the specification here:
http://www.w3.0org/TR/soap/

455

SOAP RPC

8:-1 version="1.0" encoding="UTF-8"?>
Envelope
xmlns:s="http://schemas.xalsoap.oxrg/ /envelope/">
g l“‘. > tp: ap.oxrg/soap. pPe

chal uau ssage
Request N Salag:e GhAte"http://server.chat.aip.uts.edu. au/">
<arg0>0</

<A: 1>He! '</axgl>
i u&onm
I 1 Body>
</s:Envelope>

<?xal versione*l.0" encodinge"Urr-s*?>»
<s:Envelope
salnsse"http://schemas. xulscap.org/scap/envelope/*>
<o Neadex/>

“?udun

sageResponse
mu'http //sexver chat aip. uts edu.au/*>

<re
uou/xoo-u e>Greetings ! </mess
Response </<tt~;>u-o>2°u O-04TIE 28 44 06410 00</tinas tanp>
retur

<K

<1¢>3</1¢><-u e>le mn|</uuosc>
/<ut.n-u-p>zou 0-04716:24:33.672+10:00</times tarp>
</ze

</:{livolopo>

This is an example of the body of a SOAP request and response.

Each message is XMLL.

Each message is in "envelope" that contains a header and then the SOAP message
body.

While you can build XML SOAP messages directly, they are more typically created
using toolkits or wizards that come with your programming language or development

environment.

i.e., the typical developer does not need to understand these low-level details

456

Creating a SOAP web service

package au.edu.uts.aip.chat.server;

import java.util.*;

import javax.jws.®*;

iHabiervice
public class Chat |

IHabMathod
public Collesction<Massage> adddsssage (int lastSean,
String message) {
f/ implementation. ..

‘WebHathod

public Collsction<Msssaga> getMsssages (int lastSsan) {
[/ implementation. ..

I

On Java EE, creating a SOAP web service is as simple as adding annotations to a class.
Java EE does all the work of ensuring that the SOAP service is created: it publishes a
WSDL file, it sets up the web service and it serializes/deserializes the parameters of
method calls.

457

Generated WSDL

<Tuml version="1.0" encoding="UTF-8"T»
-d:ltﬂ.nd.t:l.mu:l-

<portTYps nams="Chat >
< :lunn names" pddies s
nput wsam:Action=" Bt .F.Fjlmnutrnlumuwn-

mass
_.cm;mm uiﬁﬁtﬁ /Jameschat/Chat/addiessagenerponse

{,I'np-zl.u.m
gs =" _ hat ">
ﬂui;ghm ﬂll-thrm t=~ht !p fﬁ.. t‘: EI.LI-DI]) org/ soap/http”

style=" dnn-.nl:"_f
“<operatlon name='adddess
gnl.p oparation socapho "‘.uf.:l-
Iﬂl{ ‘bedy use="literal®/>
{1"!.

EpuE>

":"'“lﬁ Il-n-l;r use="literal™/ >
"4""?‘“

</ B

mm:ﬁm--mth lee™>

names"ChatPort” bi =tas : ChatPo "o
blt.g raddress lecatiopn="htip: Fiehat/Chat/Cha ice® />

When you deploy a JAX-WS service, you can write a WSDL interface definition file or
you can let the application server automatically generate one for you.
This is an excerpt of an automatically generated WSDL file.

458

Java web service client

// Get the client
ChatService service = new ChatServicel() ;
Chat chat = service.getChatPort() ;

// Send a message
chat.addMessage (=1, "Hello from Jawva") ;

// Show the results

for (Message message : chat.getMessages(-1)) {
System.out.println{message.getText()) ;
}

The generated WSDL file can then be used to generate Java class files that serve as a
client to the web service.

Here's an example of code that uses the web services.

Note that, aside from getting the Chat object from the ChatService, it is basically
identical to calling local methods on the local computer.

459

.NET web service client

// Get the client
ChatClient chat = new ChatClient() ;

/! Send a message
chat.addMessage (-1, "Hello from C#"):

// Show the results
foreach (var message in chat.getMessages(l))
Console.WriteLine (message. text) ;

That same Java class can be used from .NET or C#.

This is code that | wrote using C# to conect to the Java web service.

Note, of course, that the reverse is also possible.
It is just as easy to connect to a Python web service using Java.

460

Python web service client

from suds.client import Client

// Get the client
client = Client('http://chat/Chat/ChatService?WSDL')

// Send a message
client.service.addMessage (-1, 'Hello from Python')

// Show the results
for x in client.service.getMessages(-1):
print x.text

In Python, is it is even easier to connect to a SOAP web service.
This code here connects to the Java-based JAX-WS web service.

Note, of course, that the reverse is also possible.
It is just as easy to connect to a Python web service using Java.

461

JAX-RS, the Java API for RESTful Web Services is as easy to use as SOAP (or, perhaps
even easier).

462

Simplicity

Perhaps the success of simple internet protocols can

be explained by Metcalfe's “law”:

* The value of a telecommunications network is
proportional to the square of the number of
connected users of the system

https://en.wikipedia.org/wiki/Metcalfe%27s_law

463

464

REST

REpresentational State Transfer:
* Architectural style (not a protocol)
* Based around resources, identified by URIs

types), typically JSON and XML
* Standard HTTP methods are used:
= GET to fetch
* POST to create
* PUT to update
* DELETE to remove
* Communication is stateless

* Resources can have multiple representations (media

The concept of REST was described in Roy Fielding's doctoral dissertation:
Fielding, R. (2000) Architectural Styles and the Design of Network-based Software

Architectures, PhD Dissertation, University of California, Irvine.
Available online here:
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

465

SOAP vs REST

SOAP is based around method invocations:
* Call addMessage

* Call getMessage

* Call getMessages

REST is based around HTTP methods:

* POST to http://myserver/api/message
= GET http://myserver/api/ message/3

* GET http://myserver/api/ message

You could argue that in theory, there's no difference: it is just data set over the
network connection with a particular structure.

However, in practice, by using the same technologies as a web browser, REST seems
to be simpler to use and understand.

SOAP defines a standard for encoding method calls in XML to send over HTTP.
REST essentially says "let's just use HTTP directly".

466

REST benefits

+ Simplicity

» Scalability (Statelessness and Cache-ability)
* Portability

* Uniformity

* Compatibility

467

XML

<?xml version="1.0"%>
<messages>
CMesSage>
<idel</id>
<message>Greetings!</message>
<timestamp>
2014-10-04T16:23:44.706+10:00
</ timestamp>
< /message>
<message>
<ids»l</id>
<message>Greetings!</message>
<timestamp>
2014-10-04T16:23:44.T706+10:00
</ timestamp>
< /message>
</messages>

This is a simple XML document.

When using REST, there is not fixed structure for the messages.

You choose an XML document that meets the business requirements of your
application.

This XML document might be one created by a RESTful web service.

One thing to note here — that will come up later — is that an XML document has only
one root element.

The whole document has to be wrapped in a single element.

In this case it is <messages></messages>

468

JSON

{
"messages”: [
foidm: -1,
"message": "Greetings!",
"timestamp"”: "2014-10-04T16:23:44.T706+10:00"},
{rid”: Z,
"message": "Hey there!",
"timestamp": "2014-10-04T16:24:33.672+10:00"}
1
1

JSON = JavaScript Object Motation

= ISON files are JavaScript expressions

* Possible to parse using eval(), but this is poor practice
* Not all JavaScript expressions are valid JSON

This is one way that the document on the previous slide might be converted into
JSON.

http://en.wikipedia.org/wiki/JSON
http://json.org/

What are some advantages of JSON when compared to XML?
* JSON is very simple

* JSON works well with JavaScript and web applications

* JSON is easy to parse, particularly in JavaScript

* JSON uses less space than XML (smaller files)

* JSON does not require schemas

What are some disadvantages of JSON when compared to XML?

* JSON lacks schemas (no way to enforce a structure or to validate the file)

* JSON tends to work less effectively in languages other than JavaScript

* JSON lacks the sophisticated tools of XML (such as XSLT, validators, rendering
pipelines, specialized databases, programming language integration)

469

* JSON is not particularly good with large and complex documents
* JSON is not a good format for rich textual documents

469

e PROCUCTS PRoC NG SOLUTIONS AP DOCS HEL R LOGN

twilio docs

REST API: Making Calls

.......

HTTP POST to Calls

There is no fixed standard for how REST works.
You need to look at the documentation to understand what to do.

Here's an example from Twilio:

It tells us that to make a phone call you need to make a HTTP post request to /2010-
04-01/Accounts/{AccountSid}/Calls.

You need to replace the {AccountSid} with your account details, and then you encode
the From and To numbers into the posted form data.

Don't worry about the particular details.
The key point is that the documentation will tell you exactly what you need to do and

what format the request and response will be in.

In SOAP this is handled automatically using WSDL.
In REST, you have to read the documentation.

470

Creating a service

It is very easy to create a RESTful web service.

471

Initial configuration

package au.edu.uts.aip.chat.server;

import javax.ws.rs.¥;
import javax.ws.rs.core,*;

BApplicationPath("api")
public class ApplicationConfig extends Application {

}

First, you need to have a concrete subclass of Application in your project.
The @ApplicationPath annotation, tells JAX-RS the base URL for all of your web

resources.

472

Creating a resource

package au.sdu.uts.aip.chat.ssrver;

txg! AVE.util. ¥
t Javax.ws.rs. %

Fath("message”)
public class Messages |

GET
pll.lhiic List<Mes > tMass s} {
} f :I.'q;l-lnt,l:m ks ok

4 POST
public List<Message> addMess
iFormParas ("lastSean®) in]Eg't.l!-gqq..
{FormFaram|"message”) Btring massage} |
; #{ implementation

=

h(“since/ (1d] ")
public List<Message’ getMessages(FathParasm("id”} int lastSeen) [
: £ Leplesentaticn

g

1
2 tMng {APathParan("id”) int 1d) |
afarfon

A resource is created by annotating a class or method with @Path.
You can specify the HTTP methods using @GET, @POST, @PUT and so on.

JAX-RS annotations allow you to receive parameters in the message body, as form
parameters, in the path, in the headers, in cookies, as query parameters or as matrix
parameters.

(A matrix parameter is a parameter encoded in the URL, like a query parameter but
separated by semicolons: http://www.w3.org/Designlssues/MatrixURIs.html)

473

JAX-RS annotations

Content EConsumes ("*/xml")
gConsumes (MediaType . APPLICATION XML)
Type @Produces (MediaType . APPLICATION JSON)

BCookieParam("JSESSIONID")
EHeaderParam ("Accept™)
Parameter @PathParam("id")
@QueryParam ("namea")
EFormParam ("name")

return "Hello, world!":
return object;

Hgsponse return Response.ok(object,...).build():
return Response.sealther (uri) .build() ;
return Response.serverError() ;

474

JAX-B XML binding

JAX-RS needs to convert your returned objects into an appropriate XML or JSON
document to return to the user.

This is done by XML binding. JAX-RS can do the conversion automatically.

This XML binding is achieved using another technology called JAXB.

475

XML bindings

fXmlRootElement
public class Message implements Serializable {

public int getId() {
return id;

}

public String getMessage() (
return message;

}

public Date getTimestamp() {
return timestamp;
}

The key annotation here is @XmlIRootElement.
This tells JAXB that the class can be used as the root element of an XML document.

You need the @XmIRootElement to tell JAXB that the object can be converted into
XML.

From there, JAXB can do the rest.

476

477

XML bindings

EXmlRootElement
public class Message implements Serializable {

EXmlAttribute
public int getId() {
return id;

BE¥mlValue
public String getMessage() |
return message;

@XmlAttribute (name = "time-stamp")
public Date getTimestamp() (
return timestamp;

The @XmlAttribute tells JAX-B to store the value as an attribute (rather than a

separate XML element)

The @XmlValue tells JAX-B to store the value directly as the text inside the element.

478

Generated XML

<message id="1"
time-stamp="2015-07-14T15:03:44.263+10:00">
Hello, World
</message:>

So, this is the resulting XML:

Notice that the message text is now directly inside the <message> element (it is no
longer in a sub-element).

Notice that the id and time-stamp are stored as attributes, rather than separate <id>
and <timestamp> elements.

479

JSON bindings

E¥mlRootElement
public class Message implements Serializable {

public int getId() {
return id;

}

public String getMessage() |
return messadge:

}

EXmlElement (name = "time-stamp")
public Date getTimestamp() (
return timestamp;

JSON bindings aren't officially part of the Java EE standards yet (JSONB is coming
soon).

However, GlassFish is able to use XML bindings to customize the conversion of your
objects into JSON.

The same JAXB annotations can be used to customize JSON.
However, JAXB annotations are not required.

If you're using JSON with JAXB, it is best to just stick to @XmIElement.
JSON does not have the concept of values or attributes.

480

481

JAX-RS clients

482

Calling a RESTful web service

Create your JAXB classes for binding, then:
Obtain an instance of javax.ws.rs.client.Client
Configure client with the target (the URL)
Create a request

Invoke the request

Close the client

g koo R

JAX-RS provides a “fluent” APl to chain these actions
together

JAX-RS is easy to use. In the following slides, you'll see some examples.
The client API provided by JAX-RS is referred to as a “fluent” API.

This means that you do not need to call methods one-after-the-other, like this:
Thing x = new Thing();

x.setStart(1);

x.setEnd(2);

ThingHelper helper = x.getHelper("asdf");

Result result = helper.getResult();

Instead, a “fluent” API is designed to allow methods to be conveniently chained

together in a way that might also read like “normal” English.
Result result = x.from(1).to(2).withLabel("asdf").result();

483

Calling a web service

String target = "http://www.example.com/test";
Client client = ClientBuilder.newClient() ;
String result =
client. target (target)
.request (MediaType . APPLICATION JSON)
.get (String.class) ;

// handle result

client.close() ;

Get a client:
Client client = ClientBuilder.newClient();

Set the target to the web service URL:
client.target(target)

Create a request (setting the desired content type):
.request(MediaType.APPLICATION_JSON)

Invoke a HTTP GET request and returning an object of type String:
.get(String.class);

Close the client when finished:
client.close();

484

Calling a web service

String target = "http://www.example.com/test";
Request request = ...;

Client client = ClientBuilder.newClient() ;
Result result =
client. target (target)
.request (MediaType . APPLICATION_JSON)

.post (Entity. json(request) ,
Result.class) ;

// handle result

client.close() ;

Get a client:
Client client = ClientBuilder.newClient();

Result result =

Set the target to the web service URL:
client.target(target)

Create a request (setting the desired content type):
.request(MediaType.APPLICATION_JSON)

Invoke a HTTP POST request, passing in the body of the post message a request
object encoded using JSON and returning an object of type Result:
.post(Entity.json(request),
Result.class);

Close the client when finished:
client.close();

485

Calling a web service

String target = "http://www.example.com/api/message” ;
Client client = ClientBuilder.newClient() ;

Message result = client.target(target)
.path("{id}")
resclveTemplate ("id”, 1)

.request ()
.get(Message.class) ;

J/ handle result

client.close() ;

Get a client:
Client client = ClientBuilder.newClient();

Set the target to the web service URL:
Message result = client.target(target)

Use a sub-path of the target URL (i.e., we're using path parameters):
.path("{id}")

Resolve the sub-path parameter (i.e., the target is now
http://www.example.com/api/message/1):
.resolveTemplate("id", 1)

Create a request:
.request()

Use the HTTP GET method and convert the resulting XML or JSON into an instance

of the Message class:
.get(Message.class);

486

Close the client when finished:
client.close();

486

Calling a web service

String target = "http://www.example.com/api/message";

Form form = new Form() ;
form.param("message", currentMessage) ;
form.param("lastSeen", String.valueOf (lastSeen)) ;

Client client = ClientBuilder.newClient() ;
List<Message> result =
client. target (target)
.request (MediaType .APPLICATION_ XML)
.post (Entity.form(form) ,
new GenericType<List<Message>>() (}):;
// handle result

client.close() ;

Construct the parameters using a HTML-form based submission:
Form form = new Form();

form.param("message", currentMessage);
form.param("lastSeen", String.valueOf(lastSeen));

Get a client:
Client client = ClientBuilder.newClient();

Set the target to the web service URL:
List<Message> result = client.target(target)

Create a request (setting the desired content type):
request(MediaType.APPLICATION_XML)

Use the HTTP POST method, passing in the HTML form parameter and convert the
resulting XML or JSON into a list of instances of the Message class:
.post(Entity.form(form),
new GenericType<List<Message>>() {});

487

Close the client when finished:
client.close();

Advanced note:
The reason for GenericType is to deal with limitations of generic types in Java.

Read the documentation for more information:
https://docs.oracle.com/javaee/7/api/javax/ws/rs/core/GenericType.html

The key thing to notice is that the code looks like this:
new GenericType<List<Message>>() {}

and NOT like this:
new GenericType<List<Message>>()

The extra curly-brackets {} at the end are used to create a subclass.

That subclassing is essential because Java can recover generic type information from
subclasses.

It can't recover generic type information from instances.

487

JAX-RS (Server-side) Lifecycle
P th ", "
lnStance gullnlic(: gzz:g:ie:sages {
per GET
Request public List<Message> getMessages() {
// ...and so on...
@Stateless
@Path ("message”)
public class Messages |{
Pooled EJB .
public List<Message> getMessages() {
// ...and so on...
@SessionScoped
gPath("message")
Session public class Messages |{
GET
SCOped le:mblic List<Message> getMessages() {
// ...and so on...

JAX-RS doesn't define a particular lifecycle.
The specification says this:

By default a new resource class instance is created for each request to that resource.
First the constructor (see

Section 3.1.2) is called, then any requested dependencies are injected (see Section
3.2), then the appropriate

method (see Section 3.3) is invoked and finally the object is made available for
garbage collection.

An implementation MAY offer other resource class lifecycles, mechanisms for
specifying these are outside

the scope of this specification. E.g. an implementation based on an inversion-of-
control framework may

support all of the lifecycle options provided by that framework.

The key point is the first sentence:

488

By default a new resource class instance is created for each request to that resource

On Glassfish, you can use the EJB and CDI lifecycles that are permitted by the JAX-RS
specifications ("An implementation MAY offer other resource class lifecycles...").

488

Bonus slides

489

SOAP vs REST

SOAP: REST:

* Security * Simplicity

* Transactions * Not only XML

* Reliable messaging * Very flexible (an

* Sophisticated tool- architectural style,
chains rather than a formal

« Standardization protocol)

» Description languages = More compatibility
and schemas * Browser-friendly

* Complexity * AJAX-friendly

» Single-instance by * Instance-per-request by
default default

RESTful services appear to be the primary approach to web-services development
today.

For a new, public-facing web service, a RESTful APl is probably most preferred by
developers.

However, in existing organizations, SOAP may be preferred because of its additional
features.

http://stackoverflow.com/questions/19884295/soap-vs-rest-differences
http://spf13.com/post/soap-vs-rest

490

Eight fallacies

The network is reliable
Latency is zero

Bandwidth is infinite

The network is secure
Topology doesn't change
There is one administrator
Transport cost is zero

The network is homogeneous

W NOO RN R

These are listed as classic fallacies that programmers new to distributed computing
are said to be prone to make.

Essentially, it is tempting to pretend that a remote procedure call is exactly the same
as a local procedure call.

However, no network is perfect and no framework can solve all these problems.
Ultimately, you need to be conscious of the fact that your applications are distributed
applications and you need to be prepared for failures in ways that you might not have
expected.

https://blogs.oracle.com/jag/resource/Fallacies.html
http://en.wikipedia.org/wiki/Fallacies_of Distributed_Computing

A detailed explanation:
http://www.rgoarchitects.com/Files/fallacies.pdf

491

