
441



Modern web applications and web sites are not "islands". They need to communicate 
with each other and share information.

For example, when you develop a web application, you may need to do some of the 
following:
• Connect to a social network to authenticate a user
• Connect to a social network to send a post/message on behalf of your users
• Connect to a billing gateway to charge a credit card
• Connect to a phone gateway to make or receive phone calls
• Connect to a search engine to perform custom searches
• Connect to a analysis service to transform or analyze images or sound
• Connect to a video service to transform video
• And so on…

Conversely, if you are providing a novel service or technology, or if your site managed 
valuable data, other developers (or your users) may want to connect to your service.

Today, the typical way of exchanging information or allowing remote method calls is 
via web services.

442



Twitter, for example, provides a rich API for checking statuses, searching, posting and 
retrieving user timelines.

442



Facebook provides an API to extract information from the Facebook social graph.

443



Amazon provides web services that allow you to automatically manage all of their 
technologies. For example, you can use the StartInstances web service to 
automatically launch a new web server on Amazon EC2.

444



The Amazon bookstore also comes with a comprehensive API.

445



Twilio provides a web service for making and receiving telephone calls (and SMSes).

446



Stripe provides a credit card processing gateway.

447



Pin payments also provides a billing gateway.

448



449



How can these websites to communicate with each other?

This is an old problem that goes back to the early days of computer networks: how 
can code running on one computer take advantage of code running on another 
computer?

One approach could be to use standard information exchange protocols of the 
internet (e.g., email/SMTP or HTTP).

However, if we are building a distributed system, it may be preferable to use a 
method invocation model that mimics our programming languages. That is, we would 
like to be able to call a method on a remote computer as though it is running on the 
same computer.

This idea is called a "remote procedure call" (RPC). The idea goes back to the 1980s. 
Specialized network protocols were developed to help build 'distributed systems'.
http://en.wikipedia.org/wiki/Remote_procedure_call

In Java, remote procedure calls were first implemented using "RMI". RMI is an object-

450



oriented approach to remote procedure calls. It allows objects (not just methods) to 
be accessed over a network. A special "stub" is used on the client: it is a local object 
that acts like the remote object. It uses the network to communicate with the RMI 
server. On the server, a "skeleton" receives requests from the client stub and passes 
the request on to the "real" object. Any results are returned back to the client via the 
skeleton and the stub.

CORBA is a complex standard for distributed systems. It is a cross-platform RPC/RMI 
technology.

With the advent of CORBA, Java provided a version of RMI that is compatible with the 
CORBA "Inter-ORB protocol". In fact, whenever you use a remote interface of an 
Enterprise JavaBean, your EJB is compatible with CORBA.

All of these approaches used custom low-level protocols. They are complex but 
generally efficient and quite powerful.

450



These are some of the problems faced by the creators of RPC technologies.

Developing solutions to these problems creates a lot of complexity.

RPC technologies try to hide the details of the network. However, the price of hiding 
these challenges and details is complexity.

451



With the rise of the world-wide-web and the domination of HTTP as the most popular 
protocol for accessing remote resources, RPC technology adapted to take advantage 
of the HTTP protocol.

There are some advantages in using a HTTP-based protocol for creating remote 
method calls:
• HTTP is simple and easy to implement
• The popularity of the web means that most programming languages already 

support HTTP
• HTTP is often the easiest technology for bypassing corporate firewalls (everyone 

needs HTTP to browse the web, so port 80 is unlikely to be blocked by a firewall) –
this means that accessing a web service does not require developers to get 
through bureaucracy or corporate politics

• HTTP has established technologies and techniques for caching and load-balancing
• HTTP is well understood by developers
• HTTP can be tested using a web browser

In a sense, a HTTP-based approach does not try to hide the challenges of RPC. It 
leaves the complexity to the developer to solve. Perhaps this isn't such a big problem 

452



because ultimately networks do fail and no matter how sophisticated the underlying 
RPC technology, there is no way to send data through a disconnected network cable.

Three main approaches to handling remote method calls over HTTP have arisen:

XML-RPC provides a classic RPC-style architecture and is a simple protocol that works. 
It is based on sending and receiving simple XML documents.

SOAP (Simple Object Access Protocol) is also XML-based. However, despite its name, 
it is a quite complex technology. It has "all the bells and whistles" and perhaps its 
power has caused it to overshadow XML-RPC. That is, SOAP seems to have been 
much more successful than XML-RPC.

REST is not a standardized technology. It is a set of conventions for treating remote 
method invocations like requests for web pages. In REST, standard HTTP methods are 
used to POST or GET XML or JSON content from a server. While REST lacks standards 
and few frameworks or automatic tools, its simplicity seems to have driven rapid 
adoption. Most new web services on the internet are using a RESTful architecture.

452



These are the three main approaches to creating and using web services in Java EE.

We will not cover RMI / EJB in this lecture, as we already covered it in previous 
lectures. 
To create a remote interface for an EJB, you simply add a @Remote interfaces to your 
EJB.

JAX-WS is the Java technology for creating XML-based Web Services.

JAX-RS is the Java technology for creating XML-based (and JSON-based) RESTful Web 
Services.

453



454



SOAP is a complex set of standards and specifications.

You can view the specification here:
http://www.w3.org/TR/soap/

455



This is an example of the body of a SOAP request and response.

Each message is XML.
Each message is in "envelope" that contains a header and then the SOAP message 
body.

While you can build XML SOAP messages directly, they are more typically created 
using toolkits or wizards that come with your programming language or development 
environment.

i.e., the typical developer does not need to understand these low-level details

456



On Java EE, creating a SOAP web service is as simple as adding annotations to a class. 
Java EE does all the work of ensuring that the SOAP service is created: it publishes a 
WSDL file, it sets up the web service and it serializes/deserializes the parameters of 
method calls.

457



When you deploy a JAX-WS service, you can write a WSDL interface definition file or 
you can let the application server automatically generate one for you.
This is an excerpt of an automatically generated WSDL file.

458



The generated WSDL file can then be used to generate Java class files that serve as a 
client to the web service.

Here's an example of code that uses the web services.

Note that, aside from getting the Chat object from the ChatService, it is basically 
identical to calling local methods on the local computer.

459



That same Java class can be used from .NET or C#.

This is code that I wrote using C# to conect to the Java web service.

Note, of course, that the reverse is also possible. 
It is just as easy to connect to a Python web service using Java.

460



In Python, is it is even easier to connect to a SOAP web service. 

This code here connects to the Java-based JAX-WS web service.

Note, of course, that the reverse is also possible. 
It is just as easy to connect to a Python web service using Java.

461



JAX-RS, the Java API for RESTful Web Services is as easy to use as SOAP (or, perhaps 
even easier).

462



https://en.wikipedia.org/wiki/Metcalfe%27s_law

463



464



The concept of REST was described in Roy Fielding's doctoral dissertation:
Fielding, R. (2000) Architectural Styles and the Design of Network-based Software 
Architectures, PhD Dissertation, University of California, Irvine.
Available online here:
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

465



You could argue that in theory, there's no difference: it is just data set over the 
network connection with a particular structure.

However, in practice, by using the same technologies as a web browser, REST seems 
to be simpler to use and understand.

SOAP defines a standard for encoding method calls in XML to send over HTTP.
REST essentially says "let's just use HTTP directly".

466



467



This is a simple XML document.
When using REST, there is not fixed structure for the messages.
You choose an XML document that meets the business requirements of your 
application.
This XML document might be one created by a RESTful web service.

One thing to note here – that will come up later – is that an XML document has only 
one root element.
The whole document has to be wrapped in a single element.
In this case it is <messages></messages>

468



This is one way that the document on the previous slide might be converted into 
JSON.

http://en.wikipedia.org/wiki/JSON
http://json.org/

What are some advantages of JSON when compared to XML?
• JSON is very simple
• JSON works well with JavaScript and web applications
• JSON is easy to parse, particularly in JavaScript
• JSON uses less space than XML (smaller files)
• JSON does not require schemas

What are some disadvantages of JSON when compared to XML?
• JSON lacks schemas (no way to enforce a structure or to validate the file)
• JSON tends to work less effectively in languages other than JavaScript
• JSON lacks the sophisticated tools of XML (such as XSLT, validators, rendering 

pipelines, specialized databases, programming language integration)

469



• JSON is not particularly good with large and complex documents
• JSON is not a good format for rich textual documents

469



There is no fixed standard for how REST works.
You need to look at the documentation to understand what to do.

Here's an example from Twilio:
It tells us that to make a phone call you need to make a HTTP post request to /2010-
04-01/Accounts/{AccountSid}/Calls.
You need to replace the {AccountSid} with your account details, and then you encode 
the From and To numbers into the posted form data.

Don't worry about the particular details.
The key point is that the documentation will tell you exactly what you need to do and 
what format the request and response will be in.

In SOAP this is handled automatically using WSDL.
In REST, you have to read the documentation.

470



It is very easy to create a RESTful web service.

471



First, you need to have a concrete subclass of Application in your project.
The @ApplicationPath annotation, tells JAX-RS the base URL for all of your web 
resources.

472



A resource is created by annotating a class or method with @Path.
You can specify the HTTP methods using @GET, @POST, @PUT and so on.

JAX-RS annotations allow you to receive parameters in the message body, as form 
parameters, in the path, in the headers, in cookies, as query parameters or as matrix 
parameters.

(A matrix parameter is a parameter encoded in the URL, like a query parameter but 
separated by semicolons: http://www.w3.org/DesignIssues/MatrixURIs.html )

473



474



JAX-RS needs to convert your returned objects into an appropriate XML or JSON 
document to return to the user.

This is done by XML binding. JAX-RS can do the conversion automatically.

This XML binding is achieved using another technology called JAXB.

475



The key annotation here is @XmlRootElement.
This tells JAXB that the class can be used as the root element of an XML document.

You need the @XmlRootElement to tell JAXB that the object can be converted into 
XML.
From there, JAXB can do the rest.

476



477



The @XmlAttribute tells JAX-B to store the value as an attribute (rather than a 
separate XML element)
The @XmlValue tells JAX-B to store the value directly as the text inside the element.

478



So, this is the resulting XML:

Notice that the message text is now directly inside the <message> element (it is no 
longer in a sub-element).

Notice that the id and time-stamp are stored as attributes, rather than separate <id> 
and <timestamp> elements.

479



JSON bindings aren't officially part of the Java EE standards yet (JSONB is coming 
soon). 
However, GlassFish is able to use XML bindings to customize the conversion of your 
objects into JSON.
The same JAXB annotations can be used to customize JSON.
However, JAXB annotations are not required.

If you're using JSON with JAXB, it is best to just stick to @XmlElement.
JSON does not have the concept of values or attributes.

480



481



482



JAX-RS is easy to use. In the following slides, you'll see some examples.

The client API provided by JAX-RS is referred to as a “fluent” API.

This means that you do not need to call methods one-after-the-other, like this:
Thing x = new Thing();
x.setStart(1);
x.setEnd(2);
ThingHelper helper = x.getHelper("asdf");
Result result = helper.getResult();

Instead, a “fluent” API is designed to allow methods to be conveniently chained 
together in a way that might also read like “normal” English.
Result result = x.from(1).to(2).withLabel("asdf").result();

483



Get a client:
Client client = ClientBuilder.newClient();

Set the target to the web service URL:
client.target(target)

Create a request (setting the desired content type):
.request(MediaType.APPLICATION_JSON)

Invoke a HTTP GET request and returning an object of type String:
.get(String.class);

Close the client when finished:
client.close();

484



Get a client:
Client client = ClientBuilder.newClient();

Result result = 

Set the target to the web service URL:
client.target(target)

Create a request (setting the desired content type):
.request(MediaType.APPLICATION_JSON)

Invoke a HTTP POST request, passing in the body of the post message a request 
object encoded using JSON and returning an object of type Result:

.post(Entity.json(request), 
Result.class);

Close the client when finished:
client.close();

485



Get a client:
Client client = ClientBuilder.newClient();

Set the target to the web service URL:
Message result = client.target(target)

Use a sub-path of the target URL (i.e., we’re using path parameters):
.path("{id}")

Resolve the sub-path parameter (i.e., the target is now 
http://www.example.com/api/message/1):

.resolveTemplate("id", 1)

Create a request:
.request()

Use the HTTP GET method and convert the resulting XML or JSON into an instance 
of the Message class:

.get(Message.class);

486



Close the client when finished:
client.close();

486



Construct the parameters using a HTML-form based submission:
Form form = new Form();
form.param("message", currentMessage);
form.param("lastSeen", String.valueOf(lastSeen));

Get a client:
Client client = ClientBuilder.newClient();

Set the target to the web service URL:
List<Message> result = client.target(target)

Create a request (setting the desired content type):
.request(MediaType.APPLICATION_XML)

Use the HTTP POST method, passing in the HTML form parameter and convert the 
resulting XML or JSON into a list of instances of the Message class:

.post(Entity.form(form), 
new GenericType<List<Message>>() {});

487



Close the client when finished:
client.close();

Advanced note:
The reason for GenericType is to deal with limitations of generic types in Java.

Read the documentation for more information:
https://docs.oracle.com/javaee/7/api/javax/ws/rs/core/GenericType.html

The key thing to notice is that the code looks like this:
new GenericType<List<Message>>() {}

and NOT like this:
new GenericType<List<Message>>()

The extra curly-brackets {} at the end are used to create a subclass.
That subclassing is essential because Java can recover generic type information from 
subclasses.
It can't recover generic type information from instances.

487



JAX-RS doesn't define a particular lifecycle.

The specification says this:

By default a new resource class instance is created for each request to that resource. 
First the constructor (see
Section 3.1.2) is called, then any requested dependencies are injected (see Section 
3.2), then the appropriate
method (see Section 3.3) is invoked and finally the object is made available for 
garbage collection.

An implementation MAY offer other resource class lifecycles, mechanisms for 
specifying these are outside
the scope of this specification. E.g. an implementation based on an inversion-of-
control framework may
support all of the lifecycle options provided by that framework.

The key point is the first sentence:

488



By default a new resource class instance is created for each request to that resource

On Glassfish, you can use the EJB and CDI lifecycles that are permitted by the JAX-RS 
specifications ("An implementation MAY offer other resource class lifecycles…").

488



489



RESTful services appear to be the primary approach to web-services development
today.
For a new, public-facing web service, a RESTful API is probably most preferred by 
developers.

However, in existing organizations, SOAP may be preferred because of its additional 
features.

http://stackoverflow.com/questions/19884295/soap-vs-rest-differences
http://spf13.com/post/soap-vs-rest

490



These are listed as classic fallacies that programmers new to distributed computing 
are said to be prone to make.

Essentially, it is tempting to pretend that a remote procedure call is exactly the same 
as a local procedure call.
However, no network is perfect and no framework can solve all these problems.
Ultimately, you need to be conscious of the fact that your applications are distributed 
applications and you need to be prepared for failures in ways that you might not have 
expected.

https://blogs.oracle.com/jag/resource/Fallacies.html
http://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing

A detailed explanation:
http://www.rgoarchitects.com/Files/fallacies.pdf

491


