
369



Can you see the errors in the above code?
1. "dateofbirth" on line 06 vs "dob" on line 22
2. "email" on line 06 vs "emai1" on line 22 (last character is the number 1)
3. "fullname" is retrieved on line 06 but not used
4. Space is missing after "from account" on line 7
5. Quotes are around the "?" in the prepared statement on line 8. It should just be 

"where username = ?"
6. The connection is created on line 11 but not closed
7. The prepared statement on line 12 should also be closed, as a matter of good 

practice
8. ps.setString(0,…) instead of ps.setString(1,…) on line 13 (JDBC starts numbering 

from 1)
9. Username is set to password on line 19
10. Password is set to username on line 20

NONE of these errors will be detected by the compiler!

Some of the errors would not even cause immediate errors at runtime (e.g., not 
closing connections works fine for a while until the container runs out of connections 

370



in the pool; not setting the fullname in the DTO might cause information to be 
missing in a JSF view).

Clearly, JDBC has some problems. On first glance, the code above looks fairly 
reasonable. It compiles and it looks ok.

It would be better if these problems could be found by the compiler so that you're 
less likely to get a surprise when you run the application.

370



In Assignment 1, you probably created several Data Access Objects.
You would have created a DAO for accounts and another DAO to track the main data 
of your application.
The code for each DAO would have been fairly similar.
Even in a single DAO, each method follows roughly the same pattern.

As a programmer and/or a computer scientist, repetition is a sign that something 
could be improved.

Object-Relational Mapping (ORM) is the name of a technology that recognizes that 
storing and retrieving data from a database follows a common pattern.

ORM attempts to automate the process of mapping to/from database rows to 
objects.

371



In Java EE there are two main alternatives to using JDBC.

Entity Bean
An Entity Beans is an Enterprise Java Beans (EJB).
An Entity Bean is similar to a row in a database.
It is identified by a primary key and can be persisted to a database.
It is no longer a mandatory part of the Java EE specifications and is recommended for 
removal.
The problem with Entity Beans is that every EJB uses many resources.
EJBs are server-side components.
When a remote client accesses an EJB, the object is NOT sent over the network.
Instead, the client establishes a network connection and then every method call on 
the EJB is a separate network call.
Thus, if you have many hundreds of Entity Beans, you need to manage many 
hundreds of remote network connections.

Java Persistence API (JPA)
JPA is now the recommended persistence technology.
In JPA, Entities correspond (roughly) to rows in a database.

372



However, Entities are not EJBS. Entities are POJOs (Plain Old Java Objects).
This means that they do not use many resources.
This also means that the whole object can be sent over a network to a remote client: 
there is no need to retain a server-side component.
JPA Entities are like the DTOs used in a DAO (and also elsewhere where the DTO 
pattern is used).

372



In JPA, there are three main concepts:

Entity Manager
EntityManager is the "general purpose" Data Access Object in JPA.
Create, read, update, delete operations are performed using the Entity Manager.

Query Language
Java Persistence Query Language (JPQL) is the query language used by JPA.
If you know SQL, then JPQL should not be difficult.
You use the EntityManager to execute JPQL queries.

Mapping Metadata
JPA Annotations are used to tell JPA how to translate between Java classes (entities) 
and database tables/columns.
JPA has a default, automatic mapping between Java names and database names.
However, you can also use annotations to override the default behavior.

373



Object-relational mapping is very powerful and does a good job of hiding the details 
of the underlying database.
However, the abstraction isn’t perfect.
The object-relational mismatch is important.
Object-relational mapping cannot hide all the philosophical differences between 
relational databases and object oriented models.
Ignore these differences at your own peril!
If you forget that your Entities are a mapping of a database, then you will run into 
problems.
It is better to think of JPA as a "very powerful" way of creating SQL queries, rather 
than expecting that JPA provides a perfect object-oriented database.

374



375



There are some fundamental philosophical differences between the object oriented 
model and relational databases.

A relational database is based on mathematical set theory.
Each record is a database is just a "value".
Two records with the same value are the same.

In contrast, the object oriented model is based around the concept of objects that 
have unique identity.
It is possible to have two objects that have the same values but different identity (and 
so they are not the "same").

Other differences are listed in the table above.

Yet more points of distinction between the relational model and object oriented 
models are:
• Focus on data versus focus on 'objects' or 'nouns'
• Fixed size string types (VARCHAR) versus unbounded Strings
• Data sorted by indexes versus data sorted by sorting functions

376



• No concept of encapsulation or private data versus encapsulation and private fields
• Atomic attribute values versus structs and other compound types
• Referential integrity constraints and cascading deletes versus references and 

garbage collection
• Manipulation via SQL commands versus direct manipulation of fields

And more:
• Blobs
• Streaming
• Transactions
• Uniqueness constraints

Considering all these differences, it is remarkable that object-relational mapping 
(ORM) is at all possible!

If you keep these differences in mind, you will better understand the limitations of 
ORM (or JPA) and also why JPA has been designed the way it has been designed.

376



377



The first questions faced by object-relational mapping might be, "which classes 
should be mapped to the database?" and "what should the primary key be?"

Obviously, it would not be a good idea to map every single Java class to an equivalent 
database table.

JPA uses the @Entity annotation to mark those classes that should participate in 
object relational mapping.

The key requirements of an entity are:
It must be annotated with @Entity (or there must be an equivalent configuration in 
the XML descriptor).
It must have a public or protected no-argument constructor (if you declare no 
constructors, then java automatically creates a no-argument constructor for you).
It must not be a final class, nor may any persistent variables be final.
It should implement the Serializable interface.
It must have a primary key (e.g., @Id).

The example in this slide shows a database definition and its corresponding Java 

378



entity equivalent.

378



These are the requirements from section 2.1 of the JPA specifications:

The entity class must be annotated with the Entity annotation or denoted in the XML 
descriptor as an
entity.

The entity class must have a no-arg constructor. The entity class may have other 
constructors as well. The no-arg constructor must be public or protected.

The entity class must be a top-level class. An enum or interface must not be 
designated as an entity.

The entity class must not be final. No methods or persistent instance variables of the 
entity class may be
final.

If an entity instance is to be passed by value as a detached object (e.g., through a 
remote interface), the
entity class must implement the Serializable interface.

379



Entities support inheritance, polymorphic associations, and polymorphic queries.

Both abstract and concrete classes can be entities. Entities may extend non-entity 
classes as well as
entity classes, and non-entity classes may extend entity classes.

The persistent state of an entity is represented by instance variables, which may 
correspond to Java-
Beans properties. An instance variable must be directly accessed only from within the 
methods of the
entity by the entity instance itself. Instance variables must not be accessed by clients 
of the entity. The
state of the entity is available to clients only through the entity’s methods—i.e., 
accessor methods (getter/
setter methods) or other business methods.

379



The first questions faced by object-relational mapping might be, "which classes 
should be mapped to the database?" and "what should the primary key be?"

Obviously, it would not be a good idea to map every single Java class to an equivalent 
database table.

JPA uses the @Entity annotation to mark those classes that should participate in 
object relational mapping.

The key requirements of an entity are:
It must be annotated with @Entity (or there must be an equivalent configuration in 
the XML descriptor).
It must have a public or protected no-argument constructor (if you declare no 
constructors, then java automatically creates a no-argument constructor for you).
It must not be a final class, nor may any persistent variables be final.
It should implement the Serializable interface.
It must have a primary key (e.g., @Id).

The example in this slide shows a database definition and its corresponding Java 

380



entity equivalent.

380



If you want to set the primary key manually, you would declare it like this:
@Id
private int userId;
If you want JPA to automatically generate ids for entities, then you declare it like this:
@Id @GeneratedValue
private int userId;

When JPA sees @GeneratedValue, it will automatically create ids for new objects 
when they are saved in the database.
The value will be unique (however, it may not increase in steps of exactly one).

@Transient tells JPA to ignore the attribute of the entity. It will not be saved to the 
database.

@Version is an advanced feature used by JPA to perform optimistic locking.
If you have an @Version attribute, the database will have an additional column to 
keep track of the entity version.
The version will increase by one every time you make a change to the record in the 

381



database.

381



Java data types do not exactly match SQL data types.

The Java Date class may be mapped to SQL Date, Time or Timestamp (combined date 
and time) values.
To tell JPA which one to use, the @Temporal annotation is used.

Long strings and binary arrays could be stored in VARCHAR.
However, VARCHAR usually has maximum size limits.
Many databases support "Large Object" (LOB), "Character Large Object" (CLOB) or 
"Binary Large Object" (BLOB) types.
These LOBs usually allow much larger maximum sizes (but also have more 
overheads).
The @Lob annotation tells JPA to use a LOB type.

Most databases do not have a concept of an enum type.
@Enumerated can be used to tell Java whether to map the enum to a String column 
(and store by name) or a numeric column (to store by a numeric value).

382



--Fowler, M. (2003) Patterns of Enterprise Application Architecture, Addison Wesley, 
p. 47.

JPA is designed to support these three scenarios.

Things are easiest if you don't have a fixed database schema.
You can just use the default mappings provided by JPA. 
You can let JPA create the database for you.

Things are hardest if you have been given a fixed database schema.
This might be the case if you are working in a large organization that has many legacy 
systems.
Your new system may be required to work with an existing database.
JPA metadata annotations allow you to precisely control the mapping between Java 
and SQL.
However, getting the mapping "just right" can be tricky.
Furthermore, you might need to declare additional entities purely for the mapping, 
that you wouldn't ordinarily create from an object-oriented perspective.

383



In the middle ground, you might have a scenario where there is already a schema, but 
the database administrators are happy to change/evolve it.
In this case, you are likely to use JPA annotations to minimize the amount of changes 
required.
However, some complex relationships are hard to define using JPA.
In this case, you might ask small changes to be made in order to simplify the 
complexity of dealing with the relationships.

383



JPA provides annotations that allow you to override the default mapping rules.

You can configure the name of the SQL table, the column names, sizes and types.

"@Entity public class User" might map to "create table user".
You can override it with @Table(name="app_user") and then it would map to "create 
table app_user".

private String userId, by default, may map to "userid varchar(255)" but this could be 
overridden with @Column to something like "user_id varchar(10)".

The database types may also be explicitly declared.

384



In the examples so far, the annotations have been on the class fields.
In other words, the instance variables of the class have been annotated.

JPA can work with fields or properties.

Properties are the pairs of get/set methods.
If you annotate the get/set methods of a class, then JPA will call your getters and 
setters to do persistence (rather than saving the instance variables).

You can use one or the other, but not both!

I recommend property-based access because it works more closely with the Java
Beans model and inheritance.

That is, an advantage of property-based access is that you can carefully control what 
happens when data is saved and restored.
You can maintain a complex internal state, but have only a simplified state saved 
to/from the database.

385



You can use the same validation attributes that we used earlier with JSF.

386



387



An EntityManager is used to create, read, update and delete values from the 
database.

Let's look at the class above:

@Stateless
The class is a Stateless Session Bean. This is because JPA needs to run in a 
transaction. The easiest way to ensure there is a transaction is to use JPA from within 
an EJB. In Java EE applications, it makes sense that EntityManager should only be 
used from EJBs since EJBs are used for implementing the domain logic.

@PersistenceContext
This annotation is used for dependency injection of the EntityManager.
In a sense, it introduces a "persistence context" that the EntityManager will look 
after.
A persistence context is a collection of entities (objects) held in memory.
It mirrors the contents of the database.
Eventually the persistence context is closed or flushed to the database.
When this happens, all those entities (objects) held in memory are saved to the 

388



database using SQL insert or SQL update statements.

em.persist(person);
This is the "create" operation on an Entity Manager.
em.persist adds the person object to the persistence context.
Conceptually, you might also say that the instance is saved to the database.
However, this does not actually happen until the transaction is closed (i.e., the 
session bean method returns).
When the transaction closes, the persistence context is saved to the database.

388



The EntityManager offers create, read, update and delete operations.

The EntityManager works with a persistence context.
Changes don't get saved to the database until the transaction concludes or the 
changes are otherwise flushed to the database.
The em.flush() forces an immediate save to the database.

The last two methods, detach and contains, are used to remove an entity from the 
persistence context or check if the persistence context currently contains the object.

389



The persistence-context works like an in-memory list.

390



Calling persist, adds to that in-memory list.

391



If you call find, but the object isn't in the in-memory list, then JPA will look in the 
database.
If it finds it in the database, it will load it into memory and then return that to the 
user.

392



Calling find will retrieve that object from the in-memory list.

393



394



395



396



397



The changes to the in-memory database aren't saved until you call flush or the 
transaction completes (i.e., your EJB method finishes execution).

When you call flush, the new objects in the in-memory list are then inserted into the 
database (SQL: INSERT INTO).

398



When you call flush, if you've modified any objects in the in-memory list, then those 
changes are also saved back into the database (SQL: UPDATE).

399



400



When you insert an object, it isn't saved immediately (it waits until the flush or 
transaction completion).
In the same way, when you delete an entity, it doesn't get removed from the 
database immediately.

401



Instead, the deleted entity stays is remembered in an in-memory list of entities to 
delete.

402



When the changes are flushed to the database, then JPA will execute the SQL 
statement that performs the deletion (SQL: DELETE FROM)

403



404



Suppose you have an object in the in-memory database, and an object in memory 
with an identical primary key.

If you want to make the values the same, one way to do this would be to find the 
entity in memory, then copy across all the values:

e.g., 

MyEntity copy = ….;

MyEntity current = em.find(copy.getId());
current.setName(copy.getName());
current.setAge(copy.getAge());
current.setAddress(copy.getAddress());
current.setSalary(copy.getSalary());

However, JPA provides the merge function that does the same thing.

405



Merge will find the object in the in-memory list, and then copy across all the 
properties.

406



If there is no matching object in memory, then JPA will first retrieve the entity from 
the database and then copy across the values.
(So it still works like a find and then a copy).

407



408



409



410



411



A persistence context is a collection of managed entities.
In a given persistence context, there is no more than one unique entity instance for 
each identity (i.e., a database row will have at most one instance in a persistence 
context).
The persistence context is managed by the EntityManager.

The best way to think of a persistence context is as a kind of cache.
It keeps track of the connections between the database and the entities.

Objects that are in the persistence context will be tracked.
Objects that are in the persistence context are said to be managed.

If you make a change to a managed objects, they will be saved to the database when 
the persistence context is flushed.
The context can be flushed on demand (by calling em.flush()) and it will also be 
flushed automatically at the end of a method/transaction if you use JPA from within 
an EJB.

If you detach an object from the persistence context, there might still be a 

412



relationship between the database and the object. However, it is no longer connected 
to the persistence context. This means that any change you make to the detached 
entity will not be reflected in the database.

If you create a new instance of an Entity, then it is not yet associated with the 
database. It isn't until you call em.persist that the entity is associated with the 
persistence context. It will be saved to the underlying database when the persistence 
context is flushed.

412



This illustrates the lifecycle of an entity in a persistence context.
Only changes to managed objects will be saved to the database.
A removed object is a still associated with the persistence context (so it isn't 
detached), but it will be removed from the database when the persistence context is 
flushed.

413



414



In an object-oriented design, the properties of objects are other objects.

So, if you have a Message with a sender, then in an object-oriented design, calling 
getSender() should return a sender Object.

415



Relational databases don't quite have the same concept.
Instead of directly accessing properties, in a relational database you join two separate 
tables.

416



You can use JPA in a relational-database style.
i.e., get the foreign key, and then look up the other object using the foreign key as the 
primary key.

This works, but it is clumsy and not very object-oriented.

417



What we would ideally like is the ability for JPA do automatically handle the join so 
that it acts like ordinary object-oriented code even though, behind the scenes, there's 
a join that has happened.

Fortunately, this is what JPA can do.

418



What are some examples of these types of relationships?

In our social network:
• One-to-one: A user might have at most one paying account and a paying account 

would have at most one user (actually a user might have zero or one paying 
accounts: zero if they're a "free" user and one if they're a paying user)

• Many-to-one: a message might have one sender, but those senders might have 
sent many messages

• One-to-many: a user might have sent many messages, but a message will only 
have one sender

• Many-to-many: a message might have many recipients, and a user can be the 
recipient of many messages

419



JPA supports the definition of relationships.

In JPA there is a concept of an "owner" and the "inverse" side of a relationship.

This distinction is important because:
• The "owning" side is what JPA uses to do the database updates. If you change the 

inverse side, but not the owning side, then JPA will not (necessarily) update the 
underlying database.

• If you change one side, you are responsible for also updating the other side to 
ensure it is consistent.

The inverse side is identified by the "mappedBy" attribute of the relationship 
annotation.
Note: the mappedBy attribute refers the field/property of the other class (NOT the 
underlying database column).

420



421



A OneToMany relationship is just the opposite side of a ManyToOne relationship.

If you want a bidirectional relationship (i.e., the owner relationship AND the inverse 
relationship), then the ManyToOne side of the relationship must always be the owner.

If you don't want a bidirectional relationship (i.e., you don't want the inverse side), 
then it is possible to use the OneToMany annotation on its own. In this case, the 
OneToMany annotation is the owner because there is no inverse relationship.

422



423



One-to-one, many-to-one (and conversely, one-to-many) relationships can be defined 
using an extra column on underlying tables.
However, many-to-many relationships must be defined using separate tables.
These tables are called join tables.
JPA will automatically create such tables for you. 
However, if you want to override the default name of the table, you can do so with 
with @JoinTable annotation.

424



When you define a relationship, you can use any of these collection types.
The Set collection type is probably closest to the semantics of relational databases.
However, in practice, List is more widespread throughout Java and so it is more 
commonly the collection used with JPA as well.

425



Relationships may be defined with a different cascade type.

A one-to-many relationship may be defined to cascade all updates using a declaration 
as follows:
@OneToMany(cascade=CascadeType.ALL)

You might create an Entity for a person and also add to its relationships a number of 
additional entities for their office and home address.
Cascade tells JPA that when you persist the person entity, it should also "cascade" 
that persist operation.
All of the new office and home address entities in the relationship should also be 
persisted.
The change applies to all the related objects.

If you don't have cascade, then you need to manually persist each of the related 
objects to the entity manager as well.

The default is to not cascade.
In practice, it is probably better to not cascade changes as this can result in 

426



unexpected bugs.

You might use cascade when you have entities that are fully "dependent" on 
something else.
For example, if you track the number times you call a customer, you might make the 
relationship between a customer and the phone calls a cascade relationship. This is 
because you're unlikely to need to treat the phone call as an important entity in its 
own right.
You would only be referring to the phone calls in reference to the customer.

426



By default, JPA is "lazy".
If it is in a relationship with other entities, it won't query the database to fetch the 
related entities until it has to.
That is, it will not query the database until you actually start using the relationship 
field/property of your entity.

You can override this default behavior.
You can tell JPA to load the data immediately.

@OneToMany(fetch = FetchType.EAGER)

What are some advantages and disadvantages of the two approaches?
"Lazy" avoids the need for additional database queries, especially if they aren't 
needed.
"Eager" makes the data available faster and has the potential for being more efficient 
than lazy approaches if you know, in advance, that the relationship data will be 
needed.

When you're writing JPQL queries you can also specify that particular relationships 

427



should be retrieved eagerly during the query.

Advanced note:
You can also use a fetch-join in JPQL to eagerly retrieve a relationship in a particular 
query:

From the JPA specifications, section 4.4.5.3:

A FETCH JOIN enables the fetching of an association or element collection as a side 
effect of the execution
of a query.
The syntax for a fetch join is
fetch_join ::= [ LEFT [OUTER] | INNER ] JOIN FETCH join_association_path_expression
The association referenced by the right side of the FETCH JOIN clause must be an 
association or element
collection that is referenced from an entity or embeddable that is returned as a result 
of the query.
It is not permitted to specify an identification variable for the objects referenced by 
the right side of the
FETCH JOIN clause, and hence references to the implicitly fetched entities or 
elements cannot appear
elsewhere in the query.
The following query returns a set of departments. As a side effect, the associated 
employees for those
departments are also retrieved, even though they are not part of the explicit query 
result. The initialization
of the persistent state or relationship fields or properties of the objects that are 
retrieved as a result
of a fetch join is determined by the metadata for that class—in this example, the 
Employee entity
class.
SELECT d
FROM Department d LEFT JOIN FETCH d.employees
WHERE d.deptno = 1
A fetch join has the same join semantics as the corresponding inner or outer join, 
except that the related
objects specified on the right-hand side of the join operation are not returned in the 
query result or otherwise
referenced in the query. Hence, for example, if department 1 has five employees, the 
above query

427



returns five references to the department 1 entity.
The FETCH JOIN construct must not be used in the FROM clause of a subquery.

427



428



429



If we are using JPA, we may not know the precise mapping that is used to translate 
entities into database tables.
Thus, if we want to query the database, we cannot use SQL because we do not know 
the underlying database structure.

To solve this problem, JPA provides JPQL.
JPQL is a query language, that looks very similar to SQL.
JPQL queries allow you to refer to the attributes of entities in order to perform a 
database query.

For example, if we have an entity named "Message" with a field or property named 
"date", it might be mapped to a database table named "social_message" and a 
column named "date_sent".
When writing JPQL, you refer to the field/property (in the JPA specification this is 
referred to as an attribute) name rather than the underlying database name.

To declare parameters, you do not use a question mark ("?") like we did with 
PreparedStatements in JDBC.
Instead, you use a colon (":") before a name.

430



Named Queries are the JPQL equivalent of prepared statements.
Because a Named Query is declared before execution, the JPA provider is able to 
prepare or precompile the query for performance.

A Named query must be defined on an @Entity class.

431



You can also define more than one @NamedQuery on an entity.

432



433



Named queries are automatically checked at deployment: so this is a helpful way of 
spotting errors before they are encountered during production.

Criteria queries are a type-safe way of programmatically building JPQL queries.

434



In JPA, criteria queries are a type-safe way of constructing complex queries.
Instead of writing JPQL or SQL, you build a query using method calls.

JPA can be used to create meta-data classes (metamodel).
NetBeans will do this for you automatically.
If you have an entity named Person, then NetBeans will automatically create a meta-
data class named Person_ (i.e., an underscore is added to the end of the class name).

This meta-data class contains the names of columns.
You can use this meta-data to create complex queries that refer to the attributes of 
an entity in a type-safe way.

To read more about the criteria query, I recommend referring to the Beginning Java 
EE 7 book:
http://find.lib.uts.edu.au/?R=OPAC_b2874770

Alternately, there are some online references:
http://docs.oracle.com/javaee/7/tutorial/doc/persistence-criteria.htm
http://www.objectdb.com/java/jpa/query/criteria

435



436



437



JPA must run be used with a transaction.
For now, the easiest way to do this is by using JPA from within an EJB.
This is because Java EE automatically manages transactions inside an EJB.
We will explore transactions in a future lecture.

Ignoring transactions, there are still good reasons to only use JPA inside an EJB.
JPA is a technology that is used by domain logic.
Since domain logic is typically mapped to EJBs, this means that your JPA code will 
naturally be used by EJB (or called from a method in an EJB).

438



I have referred to the EntityManager as being very similar to a Data Access Object 
(DAO).

So, what do we do with DAOs?

First, why do we use DAOs?

DAOs provide an abstraction from the database.
DAOs let you substitute different databases (Java DB vs Oracle vs Microsoft SQL 
Server).
In fact, DAOs let you substitute different storage technologies (database vs document 
store vs XML documents vs filesystem).

JPA also provides an abstraction from the database.
JPA lets you substitute databases (it should automatically deal with the differences 
between database vendors).
There are some efforts to bring JPA to non-SQL databases (e.g., Hibernate OGM, and 
EclipseLink support for MongoDB and Oracle NoSQL).

439



So, JPA provides the abstraction and reusability of a DAO. However, DAOs are more 
general than JPA.

If we want to continue using DAOs, we can certainly do so.
It is very easy to implement a DAO using JPA.
Each method of your DAO would simply call the corresponding method in the 
EntityManager.
You could use the @Entity classes as your Data Transfer Objects.

However, it might be argued that writing a DAO is an unnecessary complexity.

Instead of using the DAO in your domain logic, you could use the EntityManager
directly.
This "streamlines" the business logic and reduces the amount of complexity and 
useless "boilerplate".

However, you certainly would not use the EntityManager inside your presentation 
logic.
This is not only a matter of good application design and layer, but also one of 
ensuring that the EntityManager is running in a transaction (it does not make sense 
for the presentation logic to be setting up transactions, dealing with the 
EntityManager and choosing when to flush to the database).
If you want to expose CRUD-style operations to your presentation logic, then these 
should be services provided by the domain logic.
The domain logic would be implemented in an EJB and the domain logic would use 
the EntityManager.
If the domain logic is simple, then the CRUD operations might be exposed using a 
simple "Service Façade" (see the Week 10 labs).

This is a subtle question. There is no single "correct" answer. It will depend on the 
application and is a matter of finding a good design.

For more information refer to:
Bien, A. (2012) Real World Java EE Patterns: Rethinking Best Practices. p 259
or online discussion:
http://stackoverflow.com/questions/3818589/java-ee-architecture-are-daos-still-
recommended-when-using-an-orm-like-jpa-2
http://www.infoq.com/news/2007/09/jpa-dao

439



http://www.adam-bien.com/roller/abien/entry/jpa_ejb3_killed_the_dao

439


