
220



Maintainability: How easy is it to make changes and fix bugs?
Testability: How easy is it to check for correctness and monitor and adapt the running 
system?
Affordability: How much does it cost to develop and to run?
Understandability: Can new programmers understand and improve the system?

Throughput: How many requests can be handled in a given period of time?
Latency: How long it takes to contact the server?
Response time: How long it takes to respond to an individual request?
Scalability: How does the system cope with more servers, more data and more 
users?
Availability: What proportion of the time is the system online?
Reliability: How often does it fail?

221



We have been looking at layering throughout the entire subject.
We tried to separate domain logic from presentation when we were looking at JSP.
We tried to separate persistence logic from business logic when we were looking at 
JDBC and DAOs.

Layering is an outcome of good software design.
A layer is a collection of classes that work well together and that have minimal 
dependencies on other layers.
Typically, layers build upon one another. 
Higher level layers depend on lower level layers. 
Each layer creates higher-level abstractions and hides implementation details of the 
layer below.

222



When developing software applications, we tend to think in terms of these three 
major layers:

Presentation: The code responsible for generating the visual user interface. In an 
expense management system, this would be the code that generates HTML, decides 
which fonts and layout positions to use and handles upload and download of 
receipts.

Domain logic: The code that implements the business logic of the system. In an 
expense management system, this would be code that determines an expense is 
valid, computes the expense totals, decides who to forward expenses to for approval 
and so on.

Data source: The code that stores the data. In an expense management system, this 
would be the database, the code that communicates with the database, and also the 
mechanism used for storing the uploaded files (perhaps uploaded files are stored in 
the database or in the filesystem).

Sometimes the layers are subdivided into a bit more detail and/or go by different 

223



names. For example, the book "Core J2EE Patterns" uses these layers (they refer to it 
as tiers):
Client Layer: the application or browser that displays the GUI
Presentation Layer: handles session management, content creation and delivery
Business Layer: business logic, transactions and data services
Integration Layer: connections to legacy systems and services such as rule engines or 
workflow engines
Resource Layer: the underlying database

Even though there is no "official" layering or name for the layers, professional 
developers will understand the need for layering and the general principle that we 
should keep interchangeable parts of the system separate so that they can be 
interchanged.

223



If we've got a well designed application split into layers, it may also be possible to 
distribute the application over multiple computers (e.g., run each layer on a different 
computer).
Doing so makes it possible to go from single-user to multi-user applications.
Doing so can also get us performance benefits. In particular, sharing workload over 
multiple computers can increase throughput and therefore the ability to serve more 
users.

Layers refers to the design of your code and classes.
You can have a multi-layer application on a single computer or you can have one layer 
of an application running on many computers.

When we physically separate layers on separate computers, we refer to the "physical 
layers" as tiers.
A tier is essentially a layer of physical computers.
Tiers are a physical structure.

224



A one tier or single tiered application is an application that runs entirely on one 
computer.

225



Within that one tier, we can have the entire application. All of the logical layers run 
on the single tier.

Example:
An example of this architecture would be a desktop application such as Word or 
PowerPoint.

Advantages:
• Simple
• Self-contained
• No need to run a server
• No need for network

Disadvantages:
• No resource sharing
• Monolithic applications

• Needs powerful computer
• Difficult to maintain
• Difficult to integrate

226



• Not scalable

226



Example:
• Custom application inside a company (e.g., order processing, inventory) that 

accesses the database directly

Advantages:
• Shared access to data, resources
• Typically robust, reliable (over private network)
• Less complex

Disadvantages:
• Multiple requests for data can tax the network
• Difficult to maintain or extend functionality
• Exposure to security violations (e.g., clients sending their own SQL queries)
• Not scalable (especially to web audiences)
• Ties to one presentation type

227



The layers may be distributed over two tiers in a different way.

Example:
• Web browser (client) and simple web server (server)

228



The three tier architecture is the prototypical conceptual model when thinking about 
web development. Most database-driven web applications will start out in a three 
tier architecture. When it scales and grows, additional tiers may be added.

The three tier model is the prototypical model for distribution.
The three layer model is the prototypical model for designing code in layers.
Perhaps this is why many people tend to use the word layer and tier interchangeably.
In practice, when somebody talks about the presentation tier, they may be referring 
to the presentation layer or the physical computers that the presentation layer runs 
on.
The context will make this clear.

Examples:
• Simple database-driven web applications
• Network-driven application (e.g., ERP system that has a desktop client, that 

connects to a remote web service, which in turn uses a database)

Advantages:
• Separation of business logic as distinct tier makes maintenance easier

229



• Multiple user interfaces can be built and deployed
• Supports applications that use multiple data sources: enterprise database, XML 

documents, directory service
• Encourages applications to reuse data sources
• Separation into physical tiers helps encourage design that has good separation into 

layers

Disadvantages:
• Complexity
• Vendor incompatibility
• Single point of failure

229



We can have multiple computers or systems in a tier. For example, in a three tiered 
architecture, the application server might communicate to multiple databases.

This diagram highlights another benefit.
Consider a situation where we have 100 users and three separate databases.
In a two tier or client-server architecture we would need 100 x 3 = 300 separate 
connections (each user would need to connect to each of the three databases).
In a three tiered architecture, the application server can manage the connections to 
the database. In this way, we would only need 100 connections to the application 
server plus three connections from the application server to the database. In total 
this is only 103 connections!

230



Examples:
• Sophisticated component-based applications implemented using a web application 

server
• Java EE applications
We will be building multi-tiered applications in the remainder of the subject

Advantages:
• Supports distributed applications
• Applications are built from reusable components
• Highly scalable

Disadvantages:
• Complex
• Costly
• Tiers can decrease response time (even though it may increase throughput and 

scalability)
• Load balancing issues – complex to manage

231



In multi-tier environments, things can get very complex.
Load balancers, proxies, firewalls, caches, reverse proxies and content delivery 
networks can be inserted between layers.
They can improve performance, security and scalability.

232



There is no best answer to which architecture to use. It will be a trade off depending 
on the situation.
Consider the advantages and disadvantages of each architecture when trying to make 
a decision.

For most web applications, it probably makes the most sense to start out with a 
three-tier architecture.
By keeping n-tier application architectures in mind (but only building a 3-tier 
application), you can design your application with future growth in mind.

233



This diagram illustrates some of the services provided by a Java EE 7 application 
server.
We have seen it before.

In fact, now we can recognize some of the services provided by the Java EE 7 
application server.

They help us layer our software better and also distribute it into tiers.
Many of these services relate to the components and capabilities of n-tier 
architectures.

Can you recognize how these features relate to the three layers mentioned at the 
start of the lecture?

What is the difference between a web server and an application server?

An application server is a “superset” of a web server. A web server provides features 
and services relating to serving dynamic content on the web. Application servers 
provide many more features including remote method invocation (i.e., non-web 

234



clients), transactions, database connectivity, messaging services and so on.

234



Presentation:
Clearly Servlets, JSF, JSP and EL are presentation-layer technologies.

Domain Logic:
We have seen some of these technologies already (e.g., JSF backing beans are a type 
of managed bean).
Will cover many of them later in the subject.
These services are designed with n-tier application architectures in mind.
For example, if you use Enterprise JavaBeans to implement your domain logic, then 
the Java EE container can help with distributing that domain logic across multiple 
computers.

Data Source:
JDBC we have covered as a persistence technology.
JPA will be covered later as an alternative to JDBC.
JCA and JMS are technologies used to integrate with other systems.

235



This is a fantastic resource for learning about how real world systems (Twitter, 
Youtube, Facebook, etc) are made to scale to millions of users.

236



237



238



Alexander, C., Ishikawa, S. and Silverstein, M. (1977) A Pattern Language, Oxford 
University Press, page x.

Design patterns are inspired by the Architect Christopher Alexander who created a 
pattern language to describe common solutions to architectural problems.

For example, architects use "Pools of Light" as a solution to the problem of creating a 
sense of privacy and intimacy. Warm, low, lights should pool in places where people 
congregate and socialize.

It is important to remember that design patterns are just guidelines. They will be 
adapted to suit your particular situation. You do not need to follow them as though 
they are a strict rule. They are the collected wisdom of many people who have found 
a solution to a common problem. The wisdom can provide insight and help but it 
should not be blindly followed without understanding.

239



Alexander, C., (1979) The Timeless Way of Building, Oxford University Press, page 
247.

A design pattern captures a situation, a problem and a solution. More importantly, 
however, it also captures how these three elements relate to each other.

240



Even though pattern languages started out in architecture, they've become extremely 
popular in software engineering.

The classic book, written by four authors is known as the "Gang of Four" book.

In Enterprise development there are two "classic" books. Core J2EE Patterns is 
primarily aimed at Java developers but both have introduced common and widely 
used patterns.

241



• Design patterns codify the wisdom of many experts. By using a design pattern, you 
know that you are using a solution that has worked many times before.

• Design patterns can be used to describe your system to other experts quickly and 
efficiently. For example, "In Assignment 1, you will build an MVC-based web app 
using JSF. The data access is encapsulated in Data Access Objects, with values 
stored in Data Transfer Objects." The basic structure and architecture of the code 
is clear from the description, even though I have not shown you a detailed class 
diagram.

• Design patterns help narrow down possible designs and architectures. This can 
help avoid bad ideas, focus on the essential business logic of the problem and 
speed up problem solving.

242



We have looked at many patterns already:
• MVC in Week 3
• Front Controller in Week 3 tutorials (This is where we have a Servlet that handles 

all requests and decides which action or view to show depending on the nature of 
the request. JavaServer Faces uses a front controller called FacesServlet to handle 
all incoming requests.)

• Data Access Object and Data Transfer Object in Week 5

243



In practice, design patterns are presented in a structured format.
The structured format highlights the key dimensions of the pattern (namely the 
context, problem, solution and the relationships between these three).

This is just one of many possible ways of structuring design patterns.

"... design patterns are structured according to a defined pattern template. The 
pattern template consists of sections as follows:
• Context: Sets the environment under which the pattern exists.
• Problem: Describes the design issues faced by the developer.
• Forces: Lists the reasons and motivations that affect the problem and the solution. 

The list of forces high-lights the reasons why one might choose to use the pattern 
and provides a justification for using the pattern.

• Solution: Describes the solution approach briefly and the solution elements in 
detail. The solution section contains two subsections:

• Structure: Uses diagrams to show the basic structure of the solution. The diagrams 
present the dynamic mechanisms of the solution. There is a detailed explanation 
of the participants and collaborations.

• Strategies: Describes different ways a pattern may be implemented. Where a 

244



strategy can be demonstrated using code, code may be provided in this section or 
in a separate sample code section.

• Consequences: Here we describe the pattern trade-offs. (Generally, this section 
focuses on the results of using a particular pattern or its strategy, and notes the 
pros and cons that may result from the application of the pattern.)

• Sample Code: this section includes example implementations and code listings for 
the patterns and the strategies.

• Related Patterns: This section lists other relevant patterns from other sources. "

-- Method and apparatus for developing enterprise applications using design patterns
(patent number: US 20020073396 A1) by John Crupi, Deepak Alur and Daniel Malks

244



There's a lot in the pattern template of the previous slide.
Here's a simplified template (that I may use during in-class exercises).

245



246



247



Throughput: How many requests can be handled in a given period of time.
Latency: How long it takes to contact the server.
Response time: How long it takes to respond to an individual request.

Illustrative example:

Consider an example, of calling your bank.
It is:
• High throughput (thousands of people call the bank every day)
• Low latency (you may have to wait a long time on hold to get connected to a 

person)
• High response time (you get your answer quickly and don't spend a long time 

waiting for the answer)

On the other hand, calling your mother is:
• Low throughput (only a small number of people can call her in a day)
• Low latency (contacting her is usually very fast – you aren't put on hold)
• High response time (you have a long conversation)

248



Refer to the notes on the throughput slide.

249



Refer to the notes on the throughput slide.

250



Scalability: How does the system cope with more servers, more data and more users.

Illustrative example:

Storing data in an Excel file on a drive is perfectly fine for one user. However, when 
100 users attempt to simultaneously modify a spreadsheet with millions of rows on a 
shared drive, things will not work well. This is not scalable. Any more than one 
computer and you experience problems.

Illustrative example:

The bank can always employ more staff (high scalability).
But there's only one of your mother (not scalable).

251



Availability: What proportion of the time is the system online.
Reliability: How often does it fail.

Availability and reliability are related.

Illustrative example:

Telephone banking for my bank has low availability (it is only open from 7am to 9pm).
However, it has very high reliability (it is almost never closed during these hours).

Calling my mother has high availability (I can probably call her 24 hours a day, 7 days a 
week). 
However, it has low reliability (she sometimes can't get to the phone).

252



Refer to the notes on the availability slide.

253



Throughput: How many requests can be handled in a given period of time?
Latency: How long it takes to contact the server?
Response time: How long it takes to respond to an individual request?
Scalability: How does the system cope with more servers, more data and more 
users?
Availability: What proportion of the time is the system online?
Reliability: How often does it fail?

254



255



Architectures and patterns are tools to improve the quality of your code and your 
designs.

256



"Breaking down a system into layers has a number of important benefits.
• You can understand a single layer as a coherent whole without knowing much 

about the other layers. You can understand how to build an FTP service on top of 
TCP without knowing the details of how ethernet works.

• You can substitute layers with alternative implementations of the same basic 
services. An FTP service can run without change over ethernet, PPP, or whatever a 
cable company uses.

• You minimize dependencies between layers. If the cable company changes its 
physical transmission system, providing they make IP work, we don't have to alter 
our FTP service.

• Layers make good places for standardization. TCP and IP are standards because 
they define how their layers should operate.

• Once you have a layer built, you can use it for many higher-level services. Thus, 
TCP/IP is used by FTP, telnet, SSH, and HTTP. Otherwise, all of these higher-level 
protocols would have to write their own lower-level protocols.

Layering is an important technique, but there are downsides.
• Layers encapsulate some, but not all, things well. As a result you sometimes get 

cascading changes. The classic example of this in a layered enterprise application is 
adding a field that needs to display on the UI, must be in the database, and thus 

257



must be added to every layer in between.
• Extra layers can harm performance. At every layer things typically need to be 

transformed from one representation to another. However, the encapsulation of 
an underlying function often gives you efficiency gains that more than 
compensate. A layer that controls transactions can be optimized and will then 
make everything faster.

But the hardest part of a layered architecture is deciding what layers to have and 
what the responsibility of each layer should be."

---Fowler, M. (2003) Patterns of Enterprise Application Architecture, Addison Wesley, 
p. 17.

257



These are some more patterns encountered in the subject:

Also:
• View Helper in Week 3 (We used beans in a JSP Model 1 architecture as "helpers". 

At the time, we did not refer to it as a design pattern. )
• Table Data Gateway (briefly at the end of Week 5)
• Active Record (briefly at the end of Week 5)

Perhaps our structure of exposing the model via a field in a JavaServer Faces backing 
bean is also a design pattern.
I have not seen it formalized but it seems to be a common pattern.

There is quite a lot that we have covered in this subject already. Congratulations!

258



Factory design pattern pattern

• Context: In multi-layer applications you often want to allow layers to be modular 
and/or pluggable. For example, a persistence layer may need to be changed 
depending on the environment (e.g., development vs test vs production), the 
database (e.g., Derby vs Oracle vs Microsoft) or the underlying storage technology 
(e.g., database vs filesystem vs remote server).

• Problem: You want to choose the particular implementation of an interface at run-
time.

• Forces: You want to allow multiple implementations of a single interface. You want 
to allow the choice to be made in configuration files or by scanning the execution 
environment.

• Solution: Use a Factory to encapsulate the object creation process. At runtime, the 
factory determines an appropriate implementation to use.

• Structure: See http://www.oodesign.com/factory-pattern.html for diagrams
• Strategies: See http://www.oodesign.com/factory-pattern.html for various 

implementation strategies: class registration, reflection, hard-coded switch 
statements, configuration files.

• Consequences: Adds a layer for object creation, adding overhead and complexity. 

259



Reduces dependencies on specific implementations. Makes the returned object 
instance less predictable. Enforces programming to an interface (rather than to a 
concrete implementation).

• Sample Code: See http://www.oodesign.com/factory-pattern.html for sample 
code

• Related Patterns: Abstract Factory Pattern, Factory Method Pattern, Dependency 
Injection.

259


