
95

Taking a look at the source for Servlets that we have already created, there are a
number of weaknesses:
• HTML and Java combined: The Java code and HTML code are mixed together. In a

large page the Java could get lost among the HTML and conversely a page with lots
of logic could cause the HTML to get lost. Not only is there the issue of “getting
lost” but also there is the need to separate the two for reusability, maintainability
and to separate roles.

• Graphic Designers (Usually) Don’t Code: It would be very unreasonable to expect
that a graphic designer would need to edit HTML strings embedded in
out.println(…) statements in Java files.

• Difficult to Change Appearance: Editing (and appropriately escaping) strings in a
Java file is hardly a convenient way to edit HTML.

• Difficult to Check: It is very very hard to check that HTML embedded in a Java file is
valid HTML. I know of no tools that scan strings in a Java file and check for valid
HTML syntax.

These challenges are what brings us to JavaServer Pages.

96

Before looking at JSP, we need to define a few terms.
• Declaration

This is where we introduce methods and instance or class variables.
Informally speaking, a declaration is Java code that is “outside the doGet/doPost”
method.

• Fragment
These are Java statements that can occur in a method body.
In JSP they are also called “Scriptlets”.
Informally speaking, a fragment is Java code that occurs “inside the doGet/doPost”
method.
Note that it is possible for fragments to also declare a local variable.
The key question is really “would this code be inside or outside the doGet
method?”

• Expression
This is Java code that results in a value. For example, visitorNum, 5+5,
response.getParameter(“name”).
Informally, speaking, an expression would be something that makes sense as the
parameter to a function or the right hand side of an assignment:
out.println(<an expression goes here>);

97

Object value = <an expression goes here>;

97

This is the JSP equivalent of the Servlet on the previous page:

• Declarations are wrapped in <%! %>
• Fragments are wrapped in <% %>
• Expressions are wrapped in <%= %>

Behind the scenes, this JSP page is automatically translated into Java code for a
Servlet. The Servlet is compiled and then executed.

98

We can freely mix HTML and Java. Putting HTML inside for-loops and if-statements,
for example.
This is very similar to PHP and ASP.

99

In a Servlet, we have access to variables declared as the method parameters and also
in the superclass.
Many of these variables are automatically available to us in a JSP. We do not need to
declare them. They are “implicit objects”.

100

The implicit objects are defined in section “JSP 1.8” of the JSP specification.
See https://jcp.org/aboutJava/communityprocess/final/jsr245/

The following is quoted from JSR245: “
• request

Protocol dependent subtype of: javax.servlet.ServletRequest (e.g:
javax.servlet.http.HttpServletRequest)
The request triggering the service invocation.

• response
Protocol dependent subtype of: javax.servlet.ServletResponse (e.g:
javax.servlet.http.HttpServletResponse)
The response to the request.

• pageContext
javax.servlet.jsp.PageContext
The page context for this JSP page.

• session
javax.servlet.http.HttpSession
The session object created for the requesting client (if any). This variable is only
valid for HTTP protocols.

101

• application
javax.servlet.ServletContext
The servlet context obtained from the servlet configuration object (as in the call
getServletConfig().getContext())

• out
javax.servlet.jsp.JspWriter
An object that writes into the output stream.

• config
javax.servlet.ServletConfig
The ServletConfig for this JSP page.

• page
java.lang.Object
The instance of this page’s implementation class processing the current request
(i.e., this is the same as the Kava keyword "this").

• exception
java.lang.Throwable
The uncaught Throwable that resulted in the error page being invoked.

“

101

In JSP it is possible to use an alternate Syntax shown above.
Replacing <% tags with <jsp:scriptlet> is a “cheap” first step.
It doesn’t really solve the problem.
However, it is a syntax that is more compatible with other XML/HTML processing
tools.

102

Which of these challenges are now solved with JSP?

103

Unfortunately, we haven’t improved things much. We still have many of the same
problems.

Instead of having HTML embedded inside Java classes, we now have Java embedded
inside HTML files. We’ve swapped things around but we’re in much the same place:

• HTML and Java Combined
We’ve still got this problem, except the other way around.

• Graphic Designers (Usually) Don’t Code
The resulting files are slightly better to modify – so this is an improvement, but not
a solution.

• Difficult to Change Appearance
It appears that this is one problem we have solved. At least now the HTML is easy
to edit!

• Difficult to Check
Things are slightly easier. It would be easier to identify HTML errors in a JSP page
but (as we’ll see on the next page) it isn’t completely straightforward.

104

There are (at least) three mistakes on this page. Can you see them?

1. Line 3: The <form> method (method=“GET”) is missing a closing quote.
2. Line 9: The if statement is missing a closing bracket.
3. Line 14: The </form> tag will not appear if the type is not a couple.
4. In addition, on Line 8 and 9: This code is not an error but as good practice you

may need to write code that more carefully handles null values from
request.getParameter(“type”)

How can we check for these errors?

NetBeans will identify the errors on Line 3 and 9 for us.
Line 9 will actually prevent the Servlet from compiling.
Line 3 could also be detected by validating the HTML document that was generated.

The Error on Line 14 is very tricky: it does not occur all the time. We would need to
check all possible inputs to discover this error. While in this simple case it is easy, in
general it is very hard or impossible.

105

Advanced Comment:
Would it be possible to automatically detect errors like #3?
In other words, could we write a system that would cleverly check to make sure that
the page will always generate correct output.

In general, the answer is no.
This question relates to some of the most important discoveries in computer science:
the halting problem and, in particular, Rice’s theorem.
http://en.wikipedia.org/wiki/Rice%27s_theorem
However, in practice, the problem can be solved by restricting the rules of JSP so that
it can be checked.

Even though the general question is impossible to automatically decide, it would be
possible to detect common solutions.
For example, you might check that every branch of an if-statement generates valid
code.
The approach would not be perfect --- it might detect errors that could never happen.

Consider the following code that looks like it contains “bad HTML”. The “bad HTML”
would never appear because 2 + 2 is not equal to 5.

<html>
<%

if (2 + 2 == 5) {
%>

<this-unclosed-element-will-never-appear
<%
}

%>
</html>

105

Line 3 fixed.

106

Line 3 and 9 fixed… but still there's the problem with form opened on line 3 and
closed on line 14.

This could be solved by just moving the </form> tag to line 18:

<html>
<body>
<form action="assessment.jsp" method="GET>

<p>
<input type="text" name="your_income"/>

</p>
<%

String type = request.getParameter("type");
if ("couple".equals(type)) {

%>
<p>
<input type="text" name="partner_income"/>

</p>
<%

107

}
%>
</form>
</body>
</html>

107

JSP is compiled into Servlets: on some application servers, you can even view the
generated .java files to see the servlet that gets created.

108

109

We've seen that JSP is slight improvement on Servlets.

We can improve the design even more, by separating out the two.
We can use Java code and JSP side-by-side.
This gets us the benefits of more maintainable Java code as well as HTML code that is
easier to work with.

In JSP, there are two approaches based on which code is "in charge".
In a Model 1 architecture, JSP code is responsible for generating the view, but
delegates the heavy calculation to Java classes.
In a Model 2 architecture, Java code (i.e., a servlet) does all the heavy work and then
calls JSP code to render the view.

The names are not particularly important, they just relate to the historical order they
were defined in an early JSP specification.

110

This is the basic JSP architecture we have been considering.
When we get a request, it is handled by a single page that combines domain logic and
the view code.

Our objective is to separate the Java from the HTML.
When they are separate, one needs to be “on top”.

Do we have a request come in to our JSP page and the JSP page delegates to Java?
OR, do we have a request come to Java code (i.e., a Servlet) and then have the Java
delegate to a JSP to handle the view rendering?

Who should be the “boss”? Java or HTML?

111

When JSP is the “boss” it is referred to as a “Model 1” architecture.
We could therefore improve the Model 1 architecture by moving the Java code out
into a separate file, as depicted in the slide.

See also:
http://en.wikipedia.org/wiki/Model_1

112

This is a UML sequence diagram that illustrates the flow of control:
1. The HTTP request comes in and the JSP page receives the request.
2. The JSP page contacts the Java code and updates the state of the Java code.
3. The JSP page then starts generating the output, retrieving values from the Java

code.
4. The JSP page returns the generated HTML to the user.

113

When Java is the “boss” it is referred to as a “Model 2” architecture.
We have our request first handled by Java code (a Servlet) and then after all of the
processing is complete, it passes control to a JSP page to generate the HTML
response to return to the user.

See also:
http://en.wikipedia.org/wiki/Model_2

114

This is a UML sequence diagram that illustrates the flow of control:
1. The HTTP request comes in and a Servlet receives the request.
2. The Servlet does any necessary processing.
3. The Servlet passes control to a JSP page (passing any data the JSP page needs).
4. JSP page then generates the output (using the data).
5. JSP page returns the generated HTML to the user.

115

MVC stands for Model-View-Controller.
MVC is an extension of the ‘Model 2’ architecture.

In this architecture, the Java code is also further separated into two layers:
1. A controller, that handles the request and decides what action to perform
2. A model, that contains the domain logic (or business logic) of the application

These two layers work together to handle the user’s request. Then when the request
is processed, the control is once again passed to the JSP page which retrieves values
from the model to generate the result.

See also:

High level discussion about MVC:
http://blog.codinghorror.com/understanding-model-view-controller/

More advanced readings:
http://msdn.microsoft.com/en-us/library/ff649643.aspx

116

This is a UML sequence diagram that illustrates the flow of control:
1. HTTP request comes in and a Servlet receives the request.
2. The Servlet retrieves values from the request and updates the model accordingly.
3. The Servlet decides which action to perform and calls the appropriate method on

the model.
4. The Servlet passes control to a JSP page.
5. JSP page then generates the output. It retrieves values from the model, where

required.
6. JSP page returns the generated HTML to the user.

117

These features in JSP make it possible to separate Java from HTML.

118

A Java Bean is just another word for a Java class that uses “getters” and “setters” (a
“getter” is a method such as getX() and a setter is a method such as “setX(v)”).

For example, this class is a Java Bean:

public class TaskBean {

private String taskName;
private String taskTitle;

public String getName() {
return taskName;

}

public void setName(String name) {
taskName = name;

}

public String getTitle() {

119

return taskTitle;
}

public void setTitle(String title) {
taskTitle = title;

}
}

The class has two properties:
• name (setName/getName)
• title (setTitle/getTitle)

To get the properties of a class, Java uses the following steps:
1. Get all the methods on the class starting with “get” or “set” (and also boolean

methods with “is”).
2. Delete the “get” or “set” bit from the method name.
3. Make the first letter lowercase.

Once we’ve got a Java bean, you can refer to it in JSP using jsp:useBean and
jsp:setProperty.
We can put all of our domain logic in the bean class and just use JSP to create the
bean, set its properties and retrieve the resulting values.

In this slide, we would be using a bean that looks like this:

public class CountBean {
private int count;
public void setCount(int count) {

this.count = count;
}
public void getCount() {

count = count + 1;
return count;

}
}

Technically speaking, this is a bad example of a bean.
The reason that this is a bad example is that the getCount() method has what are
called side-effects.
When you call getCount, it doesn't just retrieve a value – it also changes the value at
the same time.

119

Let's look at the code….

The first line says to create a new instance of au.edu.uts.aip.counter.CountBean and
refer to it as "counter".
The application scope means that it will create only one instance and reuse it across
the entire application.
There are other scopes you can use:
• page: one instance per JSP page request
• request: one instance per request (the difference with 'page' is that a single

request might be forwarded to different pages so there can be more than one
page involved in handling a request)

• session: one instance per user session (i.e., one instance per web browser tracked
by cookies)

• application: just one instance overall

<jsp:useBean
id="counter"
class="au.edu.uts.aip.counter.CountBean"
scope="application"/>

Then the bit with the dollar-sign is expression language:
${counter.count}
This gets translated into a call to counter.getCount();

119

This example is a slightly refined counter.
It works exactly the same as before, but it also adds the ability to set properties
based on form submissions.

So, the following line of code extracts the form submission field named "newcount"
and then passes that to counter.setCount(….);
<jsp:setProperty

name="counter"
property="count"
value="${param.newcount}"/>

120

Expression Language is used to replace “<%= expression %>” tags in JSP.
The advantage of EL is that it is fast, easy to use, and does not use special characters
that can interfere with HTML/XML editing (“<“ causes problems in HTML/XML).

An obvious question might be, "why are the two separate approaches?"

Well, <%= expression %> is the original JSP approach.
It makes the most sense when doing direct translation from JSP to Servlet files.

Expression language is more modern, more sophisticated and designed to be used in
Model 1 and Model 2 architectures.
Expression language makes it possible to write JSP code that can be processed by
standard HTML editing tools.
It's designed to be easier to understand by programmers too.

121

In a Model 2 architecture, we need some way that Java code (i.e., a servlet) can call
the template engine to generate a HTML page for the user.

This is what request.getRequestDispatcher("page.jsp").forward(request, response) is
for.

You can pass properties to the view using request.setAttribute(name, value).
So, in the example above, the JSP page results.jsp can retrieve the count attribute to
get the value of visitor_no.

122

To implement a Model 2 architecture, we need to pass control from our Java Servlet
to a JSP page.

The above illustrates how it is done:
1. First, you use setAttribute to store any data that you might need to access from

the JSP page.
2. Then, you use the request dispatcher to locate and load the JSP page.
3. Finally, from the JSP page, you use Expression Language to retrieve those values

you stored using setAttribute.

123

The JSTL provides custom tags that replace common patterns that occur in JSP pages:
looping, tests, formatting, inclusions and so on.

There are five libraries: core, fmt (formatting library), sql (for database queries), xml
(for XML processing/queries) and functions.

See: http://docs.oracle.com/javaee/5/jstl/1.1/docs/tlddocs/

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
• c:catch

Catches any Throwable that occurs in its body and optionally exposes it.
• c:choose

Simple conditional tag that establishes a context for mutually exclusive conditional
operations, marked by <when> and <otherwise>

• c:if
Simple conditional tag, which evalutes its body if the supplied condition is true and
optionally exposes a Boolean scripting variable representing the evaluation of this
condition

• c:import

124

Retrieves an absolute or relative URL and exposes its contents to either the page, a
String in 'var', or a Reader in 'varReader'.

• c:forEach
The basic iteration tag, accepting many different collection types and supporting
subsetting and other functionality

• c:forTokens
Iterates over tokens, separated by the supplied delimeters

• c:out
Like <%= ... >, but for expressions.

• c:otherwise
Subtag of <c:choose> that follows <c:when> tags and runs only if all of the prior
conditions evaluated to 'false'

• c:param
Adds a parameter to a containing 'import' tag's URL.

• c:redirect
Redirects to a new URL.

• c:remove
Removes a scoped variable (from a particular scope, if specified).

• c:set
Sets the result of an expression evaluation in a 'scope'

• c:url
Creates a URL with optional query parameters.

• c:when
Subtag of <choose> that includes its body if its condition evalutes to 'true'

<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>
• fmt:requestEncoding

Sets the request character encoding
• fmt:setLocale

Stores the given locale in the locale configuration variable
• fmt:timeZone

Specifies the time zone for any time formatting or parsing actions nested in its body
• fmt:setTimeZone

Stores the given time zone in the time zone configuration variable
• fmt:bundle

Loads a resource bundle to be used by its tag body
• fmt:setBundle

Loads a resource bundle and stores it in the named scoped variable or the bundle
configuration variable

• fmt:message
Maps key to localized message and performs parametric replacement

• fmt:param

124

Supplies an argument for parametric replacement to a containing <message> tag
• fmt:formatNumber

Formats a numeric value as a number, currency, or percentage
• fmt:parseNumber

Parses the string representation of a number, currency, or percentage
• fmt:formatDate

Formats a date and/or time using the supplied styles and pattern
• fmt:parseDate

Parses the string representation of a date and/or time

<%@ taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions" %>
• fn:contains(str, str)

Tests if an input string contains the specified substring.
• fn:containsIgnoreCase(str, str)

Tests if an input string contains the specified substring in a case insensitive way.
• fn:endsWith(str, str)

Tests if an input string ends with the specified suffix.
• fn:escapeXml(str)

Escapes characters that could be interpreted as XML markup.
• fn:indexOf(str, str)

Returns the index withing a string of the first occurrence of a specified substring.
• fn:join(strArray, str)

Joins all elements of an array into a string.
• fn:length(str)

Returns the number of items in a collection, or the number of characters in a string.
• fn:replace(str, str, str)

Returns a string resulting from replacing in an input string all occurrences of a
"before" string into an "after" substring.

• fn:split(str, str)
Splits a string into an array of substrings.

• fn:startsWith(str, str)
Tests if an input string starts with the specified prefix.

• fn:substring(str, from, to)
Returns a subset of a string.

• fn:substringAfter(str, str)
Returns a subset of a string following a specific substring.

• fn:substringBefore(str, str)
Returns a subset of a string before a specific substring.

• fn:toLowerCase(str)
Converts all of the characters of a string to lower case.

• fn:toUpperCase(str)
Converts all of the characters of a string to upper case.

124

• fn:trim(str)
Removes white spaces from both ends of a string.

124

Why is it called Model 1 and Model 2?
This is a historical quirk of JSP. It refers to the order they were described in the
original servlet specification.

The key difference is “who is the boss”.

Model 1 is simpler. Model 2 is more powerful because it allows us to decouple
URLs/actions from the resulting views that will be used.

However, this additional power comes at a cost of higher complexity.

125

126

This example comes from a discussion in Martin Fowler's book Patterns of Enterprise
Application Architecture.

127

“One of the hardest parts of working with domain logic seems to be that people
often find it difficult to recognize what is domain logic and what is other forms of
logic. An informal test I like is to imagine adding a radically different layer to an
application, such as a command-line interface to a Web application. If there's any
functionality you have to duplicate in order to do this, that's a sign of where domain
logic has leaked into the presentation. Similarly, do you have to duplicate logic to
replace a relational database with an XML file?”

“A good example of this is a system I was told about that contained a list of products
in which all the products that sold over 10 percent more than they did the previous
month were colored in red. To do this the developers placed logic in the presentation
layer that compared this month's sales to last month's sales and if the difference was
more than 10 percent, they set the color to red.”

“The trouble is that that's putting domain logic into the presentation. To properly
separate the layers you need a method in the domain layer to indicate if a product
has improving sales. This method does the comparison between the two months and
returns a Boolean value. The presentation layer then simply calls this Boolean
method and, if true, highlights the product in red. That way the process is broken into

128

its two parts: deciding whether there is something highlightable and choosing how to
highlight.”

“I'm uneasy with being overly dogmatic about this. When reviewing this book, Alan
Knight commented that he was ‘torn between whether just putting that into the UI is
the first step on a slippery slope to hell or a perfectly reasonable thing to do that only
a dogmatic purist would object to.’ The reason we are uneasy is because it's both!”

---Fowler, M. (2003) Patterns of Enterprise Application Architecture, Addison Wesley,
p. 22.

128

129

130

131

This isn’t the only way of separating domain logic from the view. Ultimately, the
decision will depend on the situation you’re in.

Sometimes it just makes practical sense to say it is simply presentation logic.

In another (unusual) situation even the fact that it is the color red might be a feature
of the domain logic (e.g., perhaps the color is configurable by the user and it is an
established business rule in the organization that any report showing 10% growth
must be red whenever it is presented).

132

Such judgments are ultimately a matter of taste that you’ll hopefully learn throughout
this subject and your assignments.

133

134

135

