
 



Introduction 

The University of Science and Technology of China (Wright Eagle) and the University of 

Technology, Sydney (UTS Unleashed!) have had a long-term involvement in several leagues at 

RoboCup including the Standard Platform League. In 2008 we experimented with a joint team 

called WrightEagleUnleashed! using the Sony AIBO robots and were Runners Up at RoboCup 

2008. In 2009 USTC teamed up with CMU and reached the Quarterfinals. Towards the end of 

2009 USTC and UTS started to put together a completely new joint team to compete in the Nao 

SPL in 2010 and 2011 and set about gathering interested students, researchers and resources. 

 

International research collaboration adds to the underlying challenge of a joint team across 

Australia and China must overcome major barriers of language, culture, distance and time-

zones in addition to costs associated with travel and coordination. Nevertheless, our experience 

has been rewarding and enriching and, as a result, we have chosen to continue our successful 

collaboration as a joint robot soccer with a new set of Nao robots. 

 

Our interest in RoboCup is driven by our research ambitions in cognitive robotics and 

knowledge representation.  As such, in moving to the Nao robots (for our first time), we chose 

not to port across our existing AIBO code-base but to start entirely from scratch and challenge 

ourselves with a new highly innovative architecture, new design and new development 

language. Our first exposure to the robots being just 60 days before competition when they 

arrived from France, we did not have the luxury of time to develop a sophisticated player, but 

instead aimed to build as many core competences, as 60 days of development would allow. We 

focused on vision and behaviour. 

 

Despite the obvious constraints, we created a working player that was highly tunable and that 

was easily adaptable to the Technical Challenges; we came 5th is each Challenge, and 9th 

overall. For the RoboCup 2010 competition we decided to focus on defense. Our robots 

defensive strategies and mechanisms performed well. They played a successful defensive 

game and came close to scoring in many circumstances. By the end of the competition, as the 

challenges were occurring, we had dramatically improved our system and were particularly 

pleased with the results on the challenges, ranking in the Top 10. 

Team Structure 

WrightEagleUnleashed! is a collaboration between UTS and USTC. While both universities 

have an involvement in all aspects of the system, primary responsibility for tasks in 2010 were 

assigned to different universities: 

 The development of the soccer player was undertaken at UTS. With one team member 

working full time, three members working fractional time (full time during the competition 

week) and the remainder of the team offering support and analysis throughout the effort. 

 The development of the locomotion engine occurred at USTC. However, while the 

resulting system was an excellent research outcome, we chose not to use it in 

competition due to several technical constraints which became apparent in Singapore. 



 The development of the iPad capability of the Open Challenge occurred at UTS, the 

development of the visual imitation capability of the Open Challenge occurred at USTC 

and these elements were successfully integrated at RoboCup 2010. We were delighted 

with our highly ambitious Open Challenge achievement. 

 The passing and dribbling challenge were undertaken by UTS and USTC jointly. We 

gained fifth placing in both challenges and were only one second away from a Third 

Placing in the dribbling challenge. 

 

Research Interests 
Our research objectives at RoboCup 2010 were to: 

1. Use the competition as an opportunity to familiarize ourselves with the Nao robots and 

engage with other international research teams in a common research platform. 

2. To ‘experiment’ and ‘play’ in our development with the aim of producing an innovative 

approach to Robot Soccer. Given the choice between elegance and performance, we 

had a preference for elegance even though we were aware that this would harm our 

soccer performance in our first year, but preferred to take a strategic view and see our 

first year in the competition as one that put us in a good position for our second year. 

3. To explore human inspired attention-based architectures for robot control in soccer 

matches. 

 

RoboCup Player 
System Architecture 
Our robots used a single-threaded control strategy with a top-level sense-think-act control loop 

synchronized to the camera’s frame-rate. With each iteration of the control loop, the system 

performs the following steps: 

1. Sense: grab a frame from the camera, collect the current joint readings and check other 

sensors (ultrasound, buttons, etc). 

2. Think: execute the attention-driven subsystem (described in the following section) and 

collect attention votes for ‘behaviors’. 

3. Act: perform those actions that received the highest attention as measure by the votes in 

the thinking cycle. 

 

The system architecture is therefore based around three major packages of modules: 

1. Sensing: modules for vision and for reading external body state into the internal system 

state 

2. Attention-driven ‘mind’: modules for the system’s intelligent behaviors with 

control/choreography directed by an attention allocation scheme 

3. Acting: modules for translating intended actions into physical effects 

 

In our final system, sensing and acting were combined into a unified ‘body’ package. Note that 

this high-level architecture is generic. It does not include any soccer-specific processes. Soccer 

playing capabilities are added to the architecture by implementing modules for the ‘mind’. For 

example, localization is implemented as an undistinguished module in the attention-driven mind.  



Body 
Locomotion 

Our walk engine was highly sophisticated and largely designed at USTC by Jinsu Liu (2010). 

Flexibility is a key capability in playing robot soccer. Changing the motion of a biped robot 

smoothly and quickly in real-time is an important soccer skill and a major challenge. In a paper 

by Liu,J. et al. (2009), we introduced a new mechanism, namely Simplified Walking, to generate 

walking patterns. The simplified walking is specified as follows: 

 

1) The robot is considered as a Linear Inverted Pendulum (LIP) which is supported by one 

of its feet. The mass of the robot is distributed on the Center of Mass (CoM) which 

moves in a horizontal plane with a constant height. 

2) The walking process only consists of a series of single-support phases. The robot uses 

each of its legs as the supporting leg in turn. One simplified step is assumed to switch to 

the next one immediately. 

3) While in a simplified step, we only use a single Zero-Moment Point (ZMP) instead of a 

ZMP trajectory in real biped walking. 

 

In our approach, we first simplify the walking process. Then, we calculate walking solutions 

which leads the robot to the destination and also satisfies the walking constraints. For example, 

the ZMP should be inside the convex hull of the contact points between the feet and the floor. At 

last, we convert a simplified walking to real walking patterns by considering double-support 

phases, height alteration and multi-body physical properties. With this mechanism, the 

continuous motion control is converted to the decision of a ZMP in the horizontal plane for each 

walking step so that complex biped motions can be planned with significantly reduced 

computation cost. 

 

Periodic motions are most often used in applications of humanoid robots. We define periodic 

biped motions as the biped walking motions which consist of three types of steps: starting steps, 

walking steps and stopping steps. Each walking sequence starts from a pair of starting steps 

and ends with a pair of stopping steps. A continuous walk can be generated by repeating a pair 

of walking steps. 

 

To make the robot gain more flexibility,we use a technique, called Biped Motion Connection, to 

connect the periodic biped motions together. The connection problem is defined as inserting two 

simplified steps in order to achieve the connection between the current walking and the 

connected walking. Figure 1(a) shows a smooth connection of two CoM trajectories. The 

simulated robot achieved the connecting steps successfully as shown in Figure 1(b). 



 
With the techniques mentioned in this section, we designed several periodic biped motions 

including forward walking, sideways walking, turning and so on. We realized an online motion 

planner to generate walking patterns for a real Nao robot, while the subsequent motion can be 

connected to the current walking motion using biped motion connection automatically. In the 

snapshots in Figure 2, we demonstrate a combined motion which is controlled by a joystick. 

 

Unfortunately, there was insufficient time to integrate and optimize the walk engine for 

competitive soccer, and it was only used in the open challenge. As such, throughout the 

competition our robots used the default walk provided by Aldebaran using the velocity-control 

API. Kicking behaviors were designed by hand using the Aldebaran ‘Choreographe’ software 

package and exported as Python code for integration into our player. 



There have been several tools developed by USTC for humanoid motion planning. We designed 

a software system to edit footstep plans and generate walking patterns for Nao robots. The 

editor is shown in Figure 3(a). The footfalls can be designed by a mouse driver. The CoM 

trajectory is calculated according to the footstep plan, automatically, by using ZMP sampling 

search algorithm, which we first proposed in 2008 (Liu, J. and Veloso, M. 2008). All walking 

motions are tested on our simulator firstly, in order to make sure that the motions are feasible 

and do not create potential harm to the robot. The simulator shown in Figure 3(b) employs 

ODE(Open Dynamics Engine) for the physics calculations. The model of the robot is described 

by using VRML(Virtual Reality Modeling Language). 

 
 

Vision 

USTC and UTS jointly have an extensive range of vision algorithms and tools for analyzing 

vision data such as an algorithmic test platform for machine vision and a GTMS (Ground Truth 

Measurement System) that can be used for various kinds of important experiments. The former 

focuses on problems in image segmentation, clustering analysis, object recognition, three-

dimension reconstruction and color learning. The latter is a low cost GTMS that uses a common 

USB video device, which is inexpensive but it can be used to construct the whole system (see 

left hand side of Figure 4(a), below). We experimented with an algorithm (see right hand side of 

Figure 4(a)) that was not only simple but exhibited good performance in tracking objects of 

interested. Only two or three personal computers are needed to run eight cameras, at a rate of 

nearly 30 fps each, simultaneously. No color table is required for the recognition process and 

the camera calibration process is automatic. Both are implemented in our project Robot Studio 

(see Figure 4(b)). This system is extensible and we plan to add new features as we require 

them. With the help of this advanced tool we are able to test a large range of possibilities 

practically and efficiently. Moreover, this tool supports a wide range of opportunities for 

undergraduates to join and contribute to our project, research and robot soccer team. 



 
After experimenting with a number of algorithms and prototypes, we chose to build the vision 

system upon the OpenCV open-source vision library (Bradski 2000). An advantage, in our case, 

of using OpenCV is that it permits rapid prototyping and a simplified code-base while exploiting 

highly optimized algorithms. 

 

The vision subsystem operates according to the following pipeline: 

1. An image is retrieved from the camera in 640x480 YUV format with auto-white-balance 

and other automatic configuration disabled. 

2. Vertical lines in the image are then sampled (at 10 pixel spacing) to find the top-most run 

of field-colored pixels. Field pixels are identified by direct look-up in a preloaded 16MB 

color look-up table. 

3. The lower convex hull of the runs of field-colored pixels is then assumed to be the field 

and all vision code is restricted to this part of the camera image (eliminating spurious 

background noise). 

4. Each pixel inside the convex hull is converted to a color index (e.g., FieldGreen, White, 

BlueGoal) by direct look-up into the same preloaded 16MB look-up table of Step 2. 

5. Isolated pixels are ignored: any pixels without neighboring pixels of the same color are 

set to be black. 

6. For each color index, the centre and axial orientation of those colored pixels is computed 

by the cvMinAreaRect2 in OpenCV. This function computes the circumscribing rectangle 

of minimal area. The centre of the computed rectangle is used for localizing the object in 

space and the axes are used in calculation of relative angle and size of the object. 

7. Along with the geometric properties of the color distribution computing in Step 6, 

additional statistics are tracked by the vision subsystem. These statistics record how 

many consecutive frames have contained an object (i.e., a color) or how many frames it 

has been since the object was last seen. These statistics allow spurious appearances or 

disappearances of objects to be filtered. 



Attention-driven ‘Mind’ 
Our previous RoboCup systems have been based on state-machines and XABSL. In 2010, our 

code-base was centered around a new attention-based architecture. In this architecture, there is 

neither central coordination nor explicit inter-module control flow. The system is designed to 

behave as a ‘Society of Mind’ (Minsky 1988). 

 

The system is composed of a set of modules. Each module is designed to perform a single task. 

For example: 

1. Scan the head in a search pattern 

2. Look at the ball 

3. Walk to the ball 

4. Look at the goal 

5. Line up to kick 

6. Kick 

7. Update LEDs 

8. Dodge a robot 

9. Detect a fall 

10. Recover from a fall 

11. Return to ‘home’ position 

 

Conceptually, each of these modules executes concurrently (in practice, concurrency is 

achieved by cooperative multitasking in which each module gets a brief time-slice after each 

frame collected from the camera). Each process also simultaneously attempts to achieve its 

goals, even if doing so is in contradiction with other processes. That is, in each cycle the robot 

will be, simultaneously, attempting to chase the ball, return to its home position, look at the goal 

and recovering from a fall. 

 

Of course, we do not want a robot to actually attempt to perform these contradictory actions 

simultaneously and this is the role of attention. Each process is associated with a level of 

attention (stored as an integer value). Each process performs its computation and sends to the 

motor control subsystem a ‘vote’ for an action to be performed. The module with the current 

highest attention wins the ‘election’ and its action is performed on the robot body. For example, 

consider the situation when the robot is giving attention to offensive strategies. In this case, if 

the ‘walk to ball’ module is issuing a command to walk forward while the ‘return to home 

position’ module is issuing a command to walk backward, then the robot body will perform the 

walk forward action because the ‘walk to ball’ module will have higher attention according to the 

offensive strategy. 

 

Attention is set and modified by both modules reflexively and also by higher-level meta-modules 

that modify attention of other modules. Meta-modules, such as those for setting up initial 

positions or for entering offensive or defensive plays, modify attention levels so that desired 

behaviors are more likely to gain control of the body. Lower-level modules may also modify 

attention levels. For example, a ‘look at ball’ module will reduce its own attention after fixating 

on a ball for a long time. By reducing its own attention, the robot will continue to look at the ball 



if that action has a great deal of attention but in ordinary play it will allow other modules to 

perform actions and avoid the ‘starvation’ of other modules. 

 

The advantage of this attention-based architecture is that it eliminates the need for state-based 

strategic design. Instead, we can calibrate the attention levels through a ‘coaching’ process and 

allow sophisticated behaviors to automatically emerge. By avoiding state machines, our robots 

are always active and never became stuck in an undesired or passive ‘state’. 

 

A disadvantage of the architecture is that a significant conceptual leap is required to induct 

developers into the attention-based mindset. This conceptual leap is somewhat analogous to 

the leap from imperative to declarative programming. Instead of defining the particular steps that 

the robot must follow, the system is designed by analyzing a problem in terms of its underlying 

independent behaviors. 

 

An obvious concern is oscillations might occur when two modules with similar levels of attention 

are in ‘competition’. However, we did not experience this in practice and now believe that in 

highly dynamic environment of competition such situations are unlikely to occur for more than a 

brief moment. 

 

Further information on our attention-driven architecture may be found in the work of Novianto, 

Johnston and Williams (2010). 

 

Behavior and Strategic Decision Making 

As this was our first year of competition and we received our robots only 60 days before the 

competition, we had insufficient time to implement our planned strategic decision making 

capabilities into our robots. However, while the system had limited strategic capabilities explicitly 

programmed, we attempted to ensure that the emergent behaviors of the attention-based 

architecture were implicitly strategic. 

 

Localization 

Given time constraints, we felt that our best chance to create a robust player was to experiment 

with nontraditional approaches to localization and to create a reactive system based on the 

emergent properties of subjective ‘localization’. We designed behaviors such that decision 

making would lead to the emergence of location-sensitive behaviours, even though they did not 

maintain an absolute world model. 

 

Localization therefore worked according to the following principles: 

1. For each object returned by the visual subsystem, the robot would use the current 

camera transformation matrix and the known altitude of the object (e.g., the ball and 

goals lie on the ground, while the waist bands are slightly above the ground) to compute 

the position of the object relative to the robot’s torso. 

2. A robot would, by default, chase the ball simply by walking in the direction of the ball that 

was computed relative to the torso. 



3. While chasing the ball, the robot would simultaneously attempt to line up for a kick by 

guiding the walk based on the angle between the goal and the ball. That is, at any given 

point in time, the goal is assumed to be an infinite distance away and the robot 

approaches a kicking position according to a known displacement from the ball from the 

axis represented by the direction of the ball to the goal. 

 

We had designed reliable and straight kicks, meaning that this naive localization strategy was 

surprisingly effective. Of course, this strategy has many weaknesses, e.g. low reliability if the 

robot is inside the goal area and the ball is close to the goal line.  However, given the short time-

frame for development we attained reasonable performance. Given time constraints, we chose 

to accept the disadvantages of subjective localisation and attempt to solve these problems in 

2011. 

 

Coordinated Control 

We developed a number of network-based coordination strategies. Unfortunately, we were not 

prepared for the technical complications associated with reconfiguring the Naos to connect to 

the RoboCup routers. Because we were not confident in performing this configuration under the 

stressful competition environment, we decided to disable the network-based activities and revert 

to the manual button interface. As such, no network-based coordinated control code was 

operating on our robots during the competition. 

 

Soccer Challenges 
Our performance in the soccer challenges substantially exceeded our performance in the soccer 

matches. Our significant improvement stemmed from the improvements to our soccer player 

that we were able to make in response to the matches and from the fact that we had more time 

to integrate our disparate code-bases and calibrate vision properly. This ability to rapidly adapt 

was the reason and the objective for using the attention-based architecture. 

 

The attention-based architecture made it easy and straightforward to adapt to the soccer 

challenges. The passing challenge and dribbling challenges were implemented simply by 

removing competition-specific modules (e.g., kick), adding a new module for the behavior 

involved in the challenge (e.g., ultrasound-based avoidance) and fine-tuning the behavior values 

to give appropriate attention to the task at hand. 

 

Of course, one could question the advantages of an attention-based architecture by arguing 

that, in a state-based player, adapting to challenges is also simply a matter of “deleting 

unwanted states” and “adding new states”. However, in our attention-based architecture each 

module is designed as a fully independent process that operates autonomously and 

continuously. Modules have few dependencies so that they can be dropped in and removed at 

will without impacting the overall reliability of the player. A newly created ultrasound-based 

avoidance module can be ‘dropped’ into a soccer player and, with no further configuration, 

immediately enable the soccer player to avoid colliding with other robots. 



Open Challenge: Attention Based Coaching (ABC) 

Interacting, communicating and collaborating with robots during their development and 

deployment is a major challenge and as a result there is enormous scope for new ideas, 

techniques and technologies that can be used to teach robots new skills, and to improve their 

performance. 

Our long term vision is to transform robot soccer (and other intelligent systems) development 

from coding at a computer to one-on-one interaction in the field. ‘Coaching’ should not be a 

process of fine-tuning state machines but should be more like human soccer coaching. We 

should be able to direct our soccer robot to “pay more attention to the goals right now” or “hold 

off on chasing the ball” and we should be able to physically demonstrate to the robot how to 

kick, how to defend and how to respond to difficult situations. 

 

The attention-based architecture goes some way towards making this possible. When a robotic 

soccer player is implemented as a collection of low-level skills orchestrated by the allocation 

and direction of attention, a ‘coach’ can watch a player and immediately configure the flow and 

allocation of attention. 

 

Our entry in the open challenge was based around this vision. We built a real-time human-robot 

interaction software system based on the Apple iPad tablet computer. It enables the user to act 

as a trainer and, thereby, simultaneously monitor and instruct multiple robot soccer players 

within the actual soccer field environment. Combined with a vision based coaching system 

(developed by USTC), we can train the robots to perform actions based on direct physical 

demonstration from a person. In the open challenge, we applied this human-demonstration 

activity in the context of goal-keeping. 

 

Human-Robot Interactivity (iPad Application) 
Our iPad console runs a native application developed using the Apple iOS SDK. It talks directly 

to a communication proxy module running on the robots. The main interface of the application 

consists of a camera view and a soccer field view which displays raw or processed live images 

streamed from the robot and the position on the field that the robot believes he is located 

respectively (Figure 5). Properly configured robots automatically establish a connection with the 

iPad console once they are turned on. An arrowed dot icon is displayed in the soccer field view 

on the console for every connected robot. The positions of the dots in the soccer field reflects 

the position the robot believes it is located on the actual field. The user of the iPad console - the 

coach - can interrogate each connected robot by tap-selecting the corresponding dot in the 

soccer field and the specific operational details of the robot will be displayed in the camera view 

on the console. Double tapping the camera-view triggers streaming of the live images captured 

from the Nao’s camera. The user of the iPad console can monitor what the robot “sees” in real-

time. The combination of all this information gives a human robot coach a clear picture of the 

mental state of the robot in real-time. 



 
Figure 5. The iPad user interface. 
 

The iPad console application relies the finger-tracing on the touch surface and accelerometers 

of the device to provide rich instructions to the robot. For example, when the robot is unable to 

correctly identify a known object due to object occlusion, as in Figure 5, the user can draw a 

circle around the blue goal using finger-trace to send an instruction to the robot to run its object 

identification algorithm and try to recognise the object. The robot may give back a list of possible 

objects it thinks the target may be. We can provide the final confirmation of the object 

identification. The robot can then save all associated parameters of the objects for later use. In 

the following case of direct action learning, by tracing around an human demonstrator, we 

provide additional assistance for robot to identify the human from the background environment 

and hence greatly improve the efficiency of human-action learning. 

 

Direct Goal-keeper Coaching (Visual Imitation) 
The visual imitation demonstration is an early show-case and application of an ongoing 

research project underway at the University of Science and Technology of China. Details of the 

project will be forthcoming in future publications or by contacting the Multi-agent Systems 

Laboratory at the University of Science and Technology of China. The demonstration was built 

upon parts of OpenCV and basic operation of the system can be understood as operating 

according to the following pipeline: 

1. A model of the background is learnt on system start-up (and this model is maintained 

throughout the demonstration) 

2. For each frame, background substitution is performed to extract the shape of the ‘coach’ 

3. A geometric model of the human body is matched against the observed outline of the 

body 

4. The geometric model is translated into Nao joint commands 

5. The Nao joint commands are transmitted to the robot for imitation 

 

All computation in this demonstration is performed on-board the Nao and using the Nao’s 

camera at a resolution of 320x240. That is, there is no off-line processing. 



Conclusion 
We were a new team in 2010, our robots arrived 60 days before the competition and during that 

time we developed an entirely new and highly innovative system inspired by the role of attention 

in decision making during human soccer matches. Our robots performed well in the soccer 

competition and achieved a fantastic result in the Technical Challenges gaining 5th place in each 

one giving rise to a 9th placing overall.  

        As a result, RoboCup 2010 was, for us, an opportunity to test our ideas of attention-driven 

behavior control in a complex, real-world setting. While we did not have the time and resources 

to develop solid low-level skills, we were able to create a system that enabled us to rapidly react 

to the conditions of competition and create a platform for future research and a more 

competitive team in 2011. 
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